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Robust Estimation of the Discrete Spectrum of
Relaxations for Electromagnetic Induction Responses
Mu-Hsin Wei, Student Member, IEEE, Waymond R. Scott, Jr., Fellow, IEEE, and James H. McClellan, Fellow, IEEE

Abstract—The electromagnetic induction response of a target
can be accurately modeled by a sum of real exponentials. However,
it is difficult to obtain the model parameters from measurements
when the number of exponentials in the sum is unknown or the
terms are strongly correlated. Traditionally, the time constants
and residues are estimated by nonlinear iterative search. In this
paper, a constrained linear method of estimating the parameters
is formulated by enumerating the relaxation parameter space and
imposing a nonnegative constraint on the parameters. The result-
ing algorithm does not depend on a good initial guess to converge
to a solution. By using tests on synthetic data and laboratory
measurement of known targets, the proposed method is shown to
provide accurate and stable estimates of the model parameters.

Index Terms—Discrete spectrum of relaxation frequencies
(DSRFs), electromagnetic induction (EMI), magnetic polarizabili-
ties, sum of exponentials.

I. INTRODUCTION

E LECTROMAGNETIC induction (EMI) sensors work by
illuminating a target of interest with a time-varying mag-

netic field and then detecting the scattered magnetic field which
is generated by the eddy currents induced on the target. Recent
research has shown that advanced EMI sensors, which measure
the scattered field at a broad range of frequencies or measure-
ment times, are capable of discriminating between certain types
of targets [1]–[3]. Target discrimination is realizable because
the measurements are strongly related to the target’s physi-
cal size, shape, orientation, and composition. In a broadband
system, it is possible that measurements at a small number
of frequencies are sufficient to represent a target. Several
researchers have demonstrated subsurface target discrimination
based on the EMI response [4], [5].

Several different approaches have been developed to analyze
the EMI response of targets. Miller et al. [6] proposed a three-
parameter model for targets of compact shapes and a four-
parameter model as its extension. The measured frequency
response can be approximated by fitting the parameters of
these models, and then, identification is performed based on the
fitted parameters. Many others have worked out the theoretical
model for the response of canonical targets [7], [8]. These

Manuscript received December 2, 2008; revised May 29, 2009. First pub-
lished October 6, 2009; current version published February 24, 2010. This work
was supported in part by the U.S. Army Night Vision and Electronic Sensors
Directorate, Science and Technology Division, Countermine Branch, and in
part by the U.S. Army Research Office under Contract W911NF-05-1-0257.

The authors are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail:
gth879w@mail.gatech.edu; waymond.scott@ece.gatech.edu; jim.mcclellan@
ece.gatech.edu).
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models, however, do not appropriately describe objects with
more general shapes.

Interestingly, the dielectric response of materials has similar
characteristics to the EMI frequency response. Thus, models
and methods developed for dielectric materials can be applied
to the EMI response. One advantage of doing so is that many
of the dielectric models and methods have been well studied
over the past 50 years and that much is known about the
behavior and properties of the models. For example, the para-
metric model proposed by Miller et al. can be rewritten in the
form of the Cole–Cole dielectric relaxation model [9]. Other
parametric models well known in polymer science, such as
the Havriliak–Negami and Cole–Davidson models, could also
be used in modeling the EMI response of targets with more
complex shapes [10], [11].

A. DRT

One analysis tool used in polymer science to characterize
materials is expressing the dielectric response in terms of a
distribution of relaxation times (DRT) [12]. The DRT can
reveal characteristics of materials that are not obvious in the
raw measurements. Because the DRT representation makes less
assumptions about the structure of the response, it offers a
model that is more general than the parametric models. The
normalized DRT G(τ) is defined as

H(ω) = g0 + gΔ

∞∫
0

G(τ)
1 + jωτ

dτ (1)

where H(ω) is the frequency response, τ is the relaxation time,
and g0 and gΔ are constants. The DRT G(τ) is normalized to
have unity area.

The DRT of some parametric models can be derived ana-
lytically. For example, the Cole–Cole model (hence, Miller’s
model) [13] is

HCC(ω) = g0 +
gΔ

1 + (jωτ0)α
(2)

GCC(τ) =
1

2πτ

sin(απ)
cosh (α log(τ/τ0)) + cos(απ)

(3)

where τ0 and α are model parameters. Here, GCC(τ) is re-
stricted to be symmetric with respect to τ0 in log-τ space
because of the assumed structure of HCC. In describing a target
response with a parametric model, details and features may be
lost in the fitting process. For example, not all targets have
symmetric DRTs. Using Cole–Cole to model such targets
would result in a loss of information. Describing a target
directly in terms of its DRT can be more accurate.

0196-2892/$26.00 © 2009 IEEE
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B. DSRF

In the study of EMI, several researchers have provided a
theoretical basis for representing the EMI response of a metallic
object as a discrete sum of damped real exponentials [14], [15].
In terms of the DRT, an EMI response can be represented by
(1) with a discrete DRT. In addition, we have found that it is
more intuitive and convenient to write (1) in terms of relaxation
frequencies rather than relaxation times. By using the notation
of relaxation frequency, we can rewrite (1) in discrete form as

H(ω) = c0 +
K∑

k=1

ck

1 + jω/ζk
(4)

where c0 is the shift, K is the model order, ck is the real spec-
tral amplitudes, and ζk = 1/τk are the relaxation frequencies.
The shape of the EMI frequency response of a target can be
precisely represented by the set S = {(ζk, ck) : k = 1, . . . , K}
which we will call the discrete spectrum of relaxation fre-
quencies (DSRFs). Each pair (ζk, ck) is one relaxation. The
parameter c0 is not considered to be part of the DSRF because
it is just a shift of the frequency response. The response at
zero frequency H(0) =

∑K
k=0 ck is due to the dc magnetization

of the target. The term DSRF and spectrum will be used
interchangeably throughout this paper.

The frequency response H(ω) is proportional to the projec-
tion of the magnetic polarizability tensor of the target being
measured by the EMI sensor. The magnetic polarizability,
hence the DSRF, of several canonical targets can be calculated
analytically, and these formulas show how the DSRF is related
to the target’s physical properties such as conductivity, perme-
ability, shape, size, and orientation [16]–[18].

The DSRF representation has several useful properties. Not
only is the DSRF an alternative to representing a target response
but also it is directly related to the physical properties of a
target. In addition, the relaxation frequencies of a target are
invariant to its relative orientation and position to the sensor.
Only the spectral amplitudes change with orientation and po-
sition, and this makes the DSRF a valuable feature for target
discrimination. Baum has coined the term “magnetic singularity
identification” when using the relaxations (singularities) for
identifying targets.

C. Difficulties

While modeling the EMI response in terms of a distribution
is of great value in examining target characteristics, estimating
the DRT, both continuous and discrete, from the frequency
response is not straightforward. Many methods have been de-
veloped in many fields of science for solving such problems. In
the case of a continuous DRT, one solves a Fredholm integral
equation of the first kind. Methods such as Tikhonov regular-
ization [19], a nonparametric Bayesian approach [20], and a
Monte Carlo method [21] could be useful. In the discrete case,
the problem is to find the parameters of a sum of exponentials.
Techniques such as iterative nonlinear least squares (LSQ)
fitting, the matrix pencil method, and modified Prony’s methods
have been used in the past [22], [23]. Often, these methods do
not perform well when three or more relaxations are present.

The goodness of fit strongly depends on a good guess of the
model order and is also very sensitive to the initial guess for
the model parameters. More discussion on the performance of
these methods can be found in [5] and [24].

In practice, a good initial guess is hard to determine, and it
is difficult, if not impossible, to have prior knowledge on the
model order. For these reasons, most existing estimation meth-
ods are prone to not converging in the fitting process. Even if the
fitting method converges well with a small residual, there is the
concern that the estimated relaxations could be very different
from the actual ones. It is possible that the estimate is merely a
good numerical fit, but has no physical significance [24].

One robust spectrum estimation method is the MATLAB
function invfreqs which implements the algorithm proposed
by Levy [25]. invfreqs is robust in the sense that it can
accurately estimate the spectrum of three or more relaxations,
and its convergence is not sensitive to the initial guess. The
major downside of this method is that it can return complex
spectral amplitudes or negative relaxation frequencies that have
no physical meaning.

In this paper, we propose a method of estimating the DSRF
that requires no prior knowledge of the model order and always
returns real model parameters. The proposed method assumes a
nonnegative DSRF. While it has not been proven that the DSRF
is nonnegative for all targets, the proposed method works well
in practice. Even with the constraint, the proposed method can
represent a much larger class of responses than the parametric
models such as the Cole–Cole and Havriliak–Negami models.
For well-known canonical targets, as presented in this paper, the
estimated DSRF is an approximate, if not an exact, representa-
tion of the actual physical DSRF.

II. ESTIMATION METHOD

When the target response is measured at N distinct frequen-
cies, (4) can be written in a matrix form

⎡
⎢⎢⎣

H(ω1)
H(ω2)

...
H(ωN )

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 1
1+jω1/ζ1

1
1+jω1/ζ2

. . . 1
1+jω1/ζk

1 1
1+jω2/ζ1

1
1+jω2/ζ2

. . . 1
1+jω2/ζk

...
...

...
. . .

...
1 1

1+jωN /ζ1

1
1+jωN /ζ2

. . . 1
1+jωN /ζk

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Z

⎡
⎢⎢⎢⎢⎣

c0

c1

c2
...

ck

⎤
⎥⎥⎥⎥⎦

h =Zc (5)

where ωmin = ω1 < ω2 < · · · < ωN = ωmax, h is the obser-
vation vector, c is the spectral amplitude vector augmented by
the shift c0, and Z is a matrix containing information about the
relaxation frequencies ζ’s. The dimension of the matrix Z is
dependent on the number of relaxations present in the spectrum
(i.e., the model order). In the case of a simple thin wire circular
loop, there is only one relaxation, so Z has two columns; the
first column is always one to account for c0.

A. Method Formulation

To estimate the DSRF (i.e., ζk and ck) from a given observa-
tion h, the usual approach is to minimize the norm of the error,
‖h−Zc‖, but this leads to a nonlinear optimization problem.
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Instead, we follow the strategy of basis pursuit to reformulate
(5) as a linear problem with an overcomplete dictionary [26]
and then use nonnegative LSQ to select the best basis, i.e.,
the best ζ. The overcomplete dictionary is actually a matrix
Z̃ that has the same form as Z in (5), but with many more
columns. To generate the columns, we enumerate a large set of
possible relaxation frequencies in log-ζ space and create one
column for each enumerated ζ. The enumeration is done by
discretizing a range of relaxation frequencies into M sample
points ζ̃m that are uniformly distributed in the log-ζ space. The
range of relaxation frequencies is chosen such that ζ̃min ≈ ωmin

and ζ̃max ≈ ωmax. The number M should be chosen large
enough to ensure that some ζ̃m’s are in close proximity to the
actual relaxation frequencies ζk’s. From our simulations, a good
choice of M gives roughly 25 sample points per decade. More
discussion on the choice of M can be found in Appendix B.

Since the matrix Z̃ has many more columns than the ex-
pected number of relaxations, we define the unknown as an
(M + 1)-element weighted selector vector c̃ and rewrite the
problem as

h = Z̃c̃ + error (6)

where we expect the solution for c̃ to have many zero ele-
ments. The vector c̃ contains the shift estimator c̃0 followed
by the spectral amplitude estimators c̃m’s. Ideally, when the
error between h and Z̃c̃ is minimized, only those c̃m’s with
corresponding ζ̃m’s that are near a true ζk will be nonzero, and
they will take on the correct spectral amplitudes ck’s. It follows
that a DSRF can then be deduced from the nonzero estimated
c̃m’s and their corresponding ζ̃m’s.

The challenge in obtaining the correct c̃ is that M is much
greater than N , so the system in (6) is underdetermined, and
there is not a unique c̃ to minimize the error. Any vector in
the null space of Z̃ can be added to c̃ without changing the
error. There are many ways to select an LSQ solution. The
Moore–Penrose pseudoinverse picks the LSQ solution that has
the smallest �2 norm. One can also compute an LSQ solution
with the fewest nonzero components. However, neither of these
LSQ solutions produces the correct spectrum. Details about
existing techniques and the difficulties of solving such a system
can be found in [24], [27], and [28].

In the EMI application, we have found that imposing a non-
negative constraint on c̃ effectively eliminates a large portion
of the null space of Z̃ and that the remaining solution space
contains reasonable answers. We suggest that the nonnegative
constraint can be used where applicable. Mathematically, the
DSRF can be found by optimizing

arg min
c̃
‖Z̃ ′c̃− h′‖ subject to c̃ ≥ 0

where Z̃
′
=

[
Re(Z̃)
Im(Z̃)

]
and h′ =

[
Re(h)
Im(h)

]
. (7)

Separating the real and imaginary parts makes the whole system
real. The first element in c̃, i.e., c̃0, can be guaranteed non-
negative by adding a sufficiently large value to the frequency
response h.

Fig. 1. Splitting of an expected relaxation followed by interpolation. The
sample points ζ̃’s do not coincide with ζtrue, so ζtrue is split into the two
nearest sample points: ζ̃a and ζ̃b. The estimation accuracy is increased by
interpolating in ζ̃ using c̃a and c̃b.

B. Implementation

The proposed estimation method can be easily implemented
through the function lsqnonneg in MATLAB which uses the
algorithm found in [29]. An alternative to lsqnonneg is the
CVX package which implements convex optimization under
MATLAB [30]. Both optimizers provide satisfactory results.
However, CVX is a larger and more sophisticated program but
is slightly slower than lsqnonneg which was written exactly
to solve LSQ problems with a nonnegative constraint. Never-
theless, CVX would be of great interest if more constraints are to
be added.

When using either lsqnonneg or CVX, we found that nor-
malizing the input data h to have an �2 norm of unity increases
the accuracy of estimation. Therefore, all data will be scaled to
an �2 norm of unity before optimization and scaled back to the
original norm after optimization because the original norm may
contain useful information for target identification.

C. Interpolation

We observed that, in the estimated DSRF, an expected re-
laxation (ζtrue, ctrue) often gets split into two peaks located at
the two sample points adjacent to ζtrue, as shown in Fig. 1. We
also observed that the two estimated spectral amplitudes add
up to the true spectral amplitude ctrue and that ζtrue is closer
to ζ̃ with larger c̃. This phenomenon can be understood: The
splitting of relaxation happens when the sample points ζ̃m’s do
not coincide with ζtrue, and ctrue gets distributed among the
two sample points that are the closest to ζtrue.

We can increase the accuracy of the estimation by tak-
ing advantage of this well-behaved and consistently recurring
phenomenon. We can reverse the splitting processes. A true
relaxation frequency could be restored by interpolating between
two adjacent ζ̃m’s with nonzero c̃m according to their spectral
amplitudes. The interpolated spectral amplitude is simply the
sum of the two adjacent spectral amplitudes. Mathematically

cintp = c̃a + c̃b (8)

log(ζintp) = log(ζ̃a) +
c̃b

c̃a + c̃b
log(ζ̃b/ζ̃a). (9)

The quantities are shown in Fig. 1. The sample points ζ̃m’s are
placed close enough that a simple linear interpolation in log-ζ
space gives satisfactory results. The interpolation is applied
only on two adjacent nonzero relaxations.
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After the interpolation is performed, any c̃m with a value of
zero is eliminated along with its corresponding ζ̃m. We denote
the resulting relaxation frequencies as ζ̂l, with spectral ampli-
tudes ĉl, or, in vector notation, as ζ̂ and ĉ, both with length L.
It is convenient and desirable to interpret the estimation results
by looking at ζ̂ and ĉ. Every entry in ζ̂ is an estimate of
one relaxation frequency of the target with its corresponding
estimated spectral amplitude in ĉ. The estimated DSRF Ŝ =
{(ζ̂l, ĉl) : l = 1, . . . , L} is then compactly stored in ζ̂ and ĉ.
In addition, the vector length L is an estimate of the model
order K. Note that c̃0 is not part of the DSRF, and therefore
not interpolated, and is not in the vector ĉ.

D. Summary

To estimate the unknown DSRF S = {(ζk, ck)} from a given
set of observations h over N frequencies, we first decide on
a relaxation frequency range [ζ̃min, ζ̃max] and the number of
points M to be sampled in this range. Then, we generate the
sample points ζ̃m’s, construct a dictionary matrix Z̃, perform
the optimization described in (7), and finally obtain the es-
timated DSRF Ŝ = {(ζ̂l, ĉl)} by interpolating the solution c̃
returned by the optimizer.

In the following three sections, we present the estimation re-
sults from synthetic, laboratory, and field data. All estimations
are performed with M = 100 and optimized with lsqnonneg.
In assessing the signal strength, the signal-to-noise ratio (SNR)
is used. The signal power is computed by

∑N
i=1 |H(ωi)|2/N .

The noise power in synthesized data is equal to the variance of
the noise. In laboratory and field data, the background signal
can be measured and is treated as noise when calculating the
SNR. All presented spectra are normalized such that

∑
i=1 ci =

1 (c0 is separate). Normalization removes the influence of the
signal amplitude which changes for many reasons.

III. SYNTHETIC DATA

In this section, the proposed estimation method is tested
against synthetic data to show its functionality, robustness, and
stability. The synthesized data are sampled at 21 frequencies
approximately logarithmically distributed over the range of
300 Hz–90 kHz. The range of ζ for estimation is chosen
such that log(ζ̃min) and log(ζ̃max) are 2.4470 and 6.6223,
respectively. This corresponds to a frequency range of 45 Hz–
670 kHz, which is larger than the measured frequency range.
With M = 100, the spacing between two sample points is
0.0422 decades. The number of samples and the frequencies
are chosen to be the same as an existing hardware system, but
the proposed method can also perform under different settings.

1) Notation: ζ and c are the true/theoretical relaxation fre-
quencies and spectral amplitudes; ζ̂ and ĉ are the estimates.

A. Dissimilarity Measure Between Two DSRF

Before we can evaluate the goodness of estimation, some
kind of measure is needed to assess the dissimilarity between
the estimated DSRF and the truth. It is difficult, however, to
compare two sparse spectra when the number of relaxations
is different, which happens frequently. When the number of

Fig. 2. Estimation of a simulated two coplanar coaxial circular loop target, for
which log ζk and ck are (4.7552, 6.0651) and (0.5013, 0.4987), respectively.
The estimates for log-ζ̂l and ĉl are (4.7557, 6.0672) and (0.5010, 0.4990),
respectively.

relaxations is the same (K = L), a possible measure of the
dissimilarity between two spectra is

D(Ŝ, S) =
1
I

I∑
i=1

| log ζ̂i − log ζi|

∀ i ζ̂i ≤ ζ̂i+1 and ζi ≤ ζi+1 (10)

where I = K = L. In (10), only the relaxation frequencies ζk’s
are considered, and spectral amplitudes ck’s are ignored. This
approximation is reasonable and convenient when two spectra
are visually similar. We refer to this dissimilarity measure as
the deviation. It has the units of decades.

Another measure that is more comprehensive is the Earth
Mover’s Distance (EMD) [31], [32]. The EMD consistently
quantifies the dissimilarity between two spectra, even when
K 	= L. Intuitively, the EMD measures how much work it
takes to morph one spectrum into the other. Specifically, one
spectrum represents piles of earth with volume ĉl located at the
associated ζ̂l. The other spectrum represents holes in the ground
with capacity ck located at ζk. The distance between a pile of
earth and a hole is naturally defined to be the difference between
ζ̂l and ζk in log space, and the work to move some earth into
a hole would be the amount of earth moved times the distance
traveled. Then, the EMD is proportional to the least amount
of work needed to move as much earth into the holes. For the
DSRF, the EMD is measured in decades because it is almost
always examined in log-ζ space. See Appendix A for details
about the EMD.

B. Two Coplanar Coaxial Loops

We simulate the frequency response for a structure with two
coplanar coaxial circular loops of copper wire. A theoretical
EMI response and the DSRF of this target are provided in
Appendix C. The circumferences of the two loops are chosen
to be 200 and 150 mm, respectively. The larger loop has a wire
radius of 0.0635 mm (#36 AWG1), and the smaller one has
a wire radius of 0.3215 mm (#22 AWG). The EMI response
is simulated at a 70-dB SNR with additive white Gaussian
noise (AWGN). The estimated spectrum is shown in Fig. 2
along with the true spectrum. The estimated spectrum is almost
identical to the truth. The deviation from the true spectrum is

1American wire gauge.
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Fig. 3. Estimation of a six-relaxation DSRF. See Table I for numerical data. (a) Estimates by the proposed method. (b) Estimates by invfreqs with nonphysical
parameters removed.

TABLE I
ESTIMATION OF A SIX-RELAXATION DSRF

0.0013 decades, which is very small compared to the detectable
ζ range, about 4 decades. The computation took 0.11 s on a
2.66-GHz CPU with 960-MB RAM.

C. Six-Relaxation DSRF

While existing sum-of-exponential estimation methods can
also successfully estimate a two-relaxation case, when the num-
ber of relaxations is three or more, these methods start to en-
counter problems such as returning complex model parameters
or not converging [24]. We test our method on a six-relaxation
DSRF. The target response is synthesized at 70-dB SNR
with AWGN

H(ω) = 1 +
6∑

k=1

ck

1 + jω/ζk
+ noise. (11)

The relaxation frequencies are chosen such that two ζk’s co-
incide with a sample point, one ζk is half way between two
log-ζ sample points, and the rest are randomly in between
sample points. The relaxation frequencies are chosen this way
to demonstrate the functionality of the proposed method when
the sample points do not coincide with the true relaxation
frequencies.

The synthesized and estimated DSRFs are shown in Fig. 3(a)
and Table I. All six relaxation frequencies are correctly recov-
ered. The estimated model parameters are real, and the devi-
ation from truth is small. The EMD between the estimate and
truth is 0.0365 decades. There is a seventh relaxation in the esti-
mate introduced by the noise, but its spectral amplitude is small.

Now, we estimate the DSRF of the same data using
invfreqs. The a priori model order is chosen to be 8 which
is slightly higher than the actual but is reasonable because,
in practice, it is difficult to know the actual model order. The
estimated model parameters are recorded in Table I. There are
two estimated ζ’s that are complex and one negative. We can

try to obtain a physically possible DSRF by throwing away
these complex or negative relaxation frequencies. The resulting
estimated DSRF is shown in Fig. 3(b). Three relaxations are
correctly recovered, but the two left most expected relaxations
are not. The EMD between the estimate and truth is 0.3323
decades, much higher than the EMD of the proposed method.

Although a physically possible DSRF can be obtained by
throwing away the nonphysical estimates, the resulting spec-
trum can be quite different from the truth. Using the actual
model order or its neighboring numbers as the a priori model
order does not preclude complex model parameters either.
Nevertheless, when the true model order is low and the SNR
is high, satisfactory estimates can be obtained from invfreqs
by throwing out nonphysical parameters.

Returning complex or nonphysical estimates is a problem
that plagues many methods, and there is not a proper way to
deal with the complex estimates. The best way is perhaps to
restrict the model parameters to be real and physical when
setting up the problem, and this is the approach taken in the
proposed method.

D. SNR

To see how the proposed method performs in noise, a
Monte Carlo simulation versus SNR is run on a target with a
four-relaxation DSRF. Goodness of estimation is measured by
the EMD between the estimate and truth. The simulation result,
shown in Fig. 4, shows the robustness of the estimation method
at different SNRs.

As expected, the EMD between the estimate and the truth
increases as the SNR decreases. This suggests that the proposed
method is functional in a range of SNR where the EMD is
below some threshold. This threshold, however, depends on the
application of the estimated spectrum. For example, in the case
of classification, a more robust classifier may tolerate worse
estimations and therefore allow lower SNR.
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Fig. 4. Monte Carlo simulation on goodness of estimation versus SNR
performed on a four-relaxation DSRF. Sample size is 10 000 at each SNR. Error
bars indicate the range of EMD between the 10th and 90th percentiles.

Fig. 5. Monte Carlo simulation on goodness of estimation versus SNR for
different DSRFs with model order ranging from 1 to 10. Sample size is 10 000.

The same noise simulation was also performed on invfreqs
using the actual model order as the a priori model order. Non-
physical parameters are removed from the estimate. As shown
in Fig. 4, invfreqs barely functions except at around 90-dB
SNR where its average EMD drops to 0.1 decades. In com-
parison, the proposed method has an average EMD 100 times
smaller than that of invfreqs at 90-dB SNR and has low EMD
for a wide range of SNR.

In reality, the depth and size of the target are two dominant
factors of SNR. The SNR increases with the size of the target
and decreases with the buried depth. In our laboratory measure-
ments, a typical SNR for loop targets in this work is 70 dB when
the target is placed 10 cm below the EMI sensor.

Fig. 5 shows the same Monte Carlo simulation performed on
DSRFs with different model orders using the proposed method.
It is seen that a higher model order DSRF requires a higher SNR
to achieve a given goodness of fit (EMD). Although the curves
are different for each model order, all curves have the same
behavior, i.e., the goodness of estimation is positively correlated
to the SNR. The consistent trend of these curves suggests that
the proposed method is stable and functional over a wide range
of SNR.

IV. LABORATORY DATA

In this section, we are concerned with the physical meaning
of the estimated DSRF. We will show that the estimated spec-
trum agrees with the theoretical and physical DSRFs derived
from the electromagnetic theory, and the estimate is not just
another good fit to the data, which can be a problem for other es-
timation methods [24]. The data are measured with a wideband
EMI sensor operating at 21 frequencies approximately logarith-
mically distributed over the range of 300 Hz–90 kHz [33].

Fig. 6. (a) Frequency response of three independently measured single loops
on an Argand diagram. Responses are normalized such that ‖h‖2 = 1. Mea-
surements are labeled in the form of AWG/circumference (in millimeters).
(b) Theoretical and estimated DSRFs. Theoretical log ζk , from left to right,
are 4.9364, 5.6416, and 6.0167. Estimated log ζ̂l, from left to right, are 4.9411,
5.6534, and 6.0195. All relaxations have an amplitude of unity.

The frequency response of targets will be presented on
Argand diagrams. Specifically, complex frequency response
functions are plotted on a complex plane with the imaginary
part as the vertical axis, the real part as the horizontal axis, and
frequency as the parameter.

A. Single Loop

We first examine the simplest case—a single thin-wire cir-
cular loop. The theoretical EMI frequency response and DSRF
can be found in [16]. This target contains only one relaxation
located at ζ = R/L, where L is the inductance and R is
the resistance of the loop. These quantities can be computed
according to (19) and (20) in Appendix C.

Fig. 6(a) shows three independently measured EMI re-
sponses for circular copper loops of circumferences 150, 200,
and 200 mm and AWG Nos. 24, 32, and 36, respectively.
The theoretical and estimated DSRFs are shown together in
Fig. 6(b). The estimates are seen to agree with the the-
ory. The deviations from the theory are 0.0047, 0.0117, and
0.0028 decades for the loops with AWG Nos. 24, 32, and 36, re-
spectively. All deviations are relatively small in the observable
relaxation frequency range, so we conclude that the estimated
DSRF is an accurate representation of the physical DSRF.
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Fig. 7. (a) Laboratory-measured frequency response of two coplanar coaxial
circular loops on an Argand diagram. Theory deviates from the measure-
ment at higher frequencies. Responses are normalized such that ‖h‖2 = 1.
(b) Theoretical and estimated DSRFs. log ζk and ck are (4.7552, 6.0651) and
(0.5013, 0.4987), respectively. The estimate log-ζ̂l and ĉl are (4.7768, 6.0514)
and (0.4941, 0.5059), respectively.

B. Two Coplanar Coaxial Circular Loops

To test the method on a more complicated spectrum, we
revisit the case of a target with two coplanar coaxial circular
loops considered earlier. A physical target was built according
to the same specifications described in Section III-B. The EMI
response of this target was measured in the laboratory and is
shown in Fig. 7(a). The SNR is about 70 dB. The estimated and
theoretical DSRFs are shown in Fig. 7(b).

The estimated DSRF deviates from the theory slightly with
a deviation of 0.0177 decades. We believe that this is mostly
due to the thin-wire approximation used in the theory. In the
theory, the wire radius is assumed to be much smaller than
the loop radius. The inner loop (#22 AWG) has a loop radius
to wire radius ratio of about of 47 which is not very high,
meaning that the wire cannot be modeled as infinitely thin. In
addition, thicker wires have a secondary relaxation due to the
off-wire-axial current flow which is not accounted for in the
theory. At any rate, the deviation is small, and the estimated
spectrum is very close to the theory. We can thus conclude that
this estimated DSRF is an accurate representation of the true
DSRF of the physical target.

C. Nonmagnetic Sphere

The spectrum of a metallic sphere is difficult to estimate
because it contains an infinite sequence of relaxations, and the
spacing between successive relaxation frequencies decreases
as the relaxation frequency decreases [17]. The decrease in
spacing makes the relaxations in the region of these closely
spaced ζ’s indistinguishable from one another. It is therefore

Fig. 8. DSRF estimation of a laboratory-measured sphere. The theoretical
DSRF has an infinite sequence of relaxation frequencies.

understood that it is impossible to perfectly recover the spec-
trum of a sphere. Here, the proposed method is tested against
the EMI response of an aluminum sphere measured in the lab.
The sphere has a radius of 0.9525 cm. The theoretical and
estimated DSRFs are shown in Fig. 8. The EMD between the
truth and estimate is 0.1088 decades.

In the estimated DSRF, the first two relaxations are cor-
rectly recovered, but the remaining theoretical relaxations are
accounted for by the other three estimated ones. We observed
that closely spaced theoretical relaxations in one region are
combined into one estimated relaxation, and the theoretical
spectral amplitudes in that region roughly add up to the es-
timated spectral amplitude. For example, the right most esti-
mated relaxation has an amplitude of 0.0438, and it accounts
for the infinitely many theoretical relaxations to its right, which
have an amplitude sum of 0.0521. The estimated DSRF, even
though it cannot recover exactly the theoretical DSRF, is seen
to approximate the theory. In this case of a sphere, the estimated
DSRF is an approximation to the physical DSRF, and it is not
just a good fit, but a fit that can be related to the physical
properties of the target.

V. FIELD DATA

As a final demonstration of the proposed method, we es-
timate the DSRF of three types of landmines (Fig. 9). The
EMI measurement system uses a dipole transmit coil and a
quadrapole receive coil along with a down-track filter that is
important to make the nonnegative constraint applicable for
this system [33]. For each type of landmine, measurements
were collected from several mines buried at different depths
and locations, and the DSRF of each sample was estimated and
then plotted together with others of the same type. The spectral
amplitudes are represented by the color intensity.

Fig. 9(a) shows the DSRF of seven Type-A mines: low metal
content, nonmagnetic, and moderate EMI response antiperson-
nel mines. The SNR ranges from about 45 to 60 dB. All seven
Type-A mines exhibit consistency in the relaxation frequencies
and the spectral amplitudes. The average EMD between pairs
of mines is 0.0594 decades.

Fig. 9(b) shows the DSRF of eight Type-B mines: medium-
metal content, magnetic, and strong EMI response antiper-
sonnel mines. The SNR ranges from about 55 to 70 dB. The
spectra are consistent; both ζ̂ and ĉ exhibit the same behavior
in all eight samples. Mine #7 differs from the others somewhat



1176 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 3, MARCH 2010

Fig. 9. Estimated DSRF of real landmines. The spectral amplitude is repre-
sented by the intensity: The darker the color, larger the amplitude. (a) Seven
Type-A mine. (b) Eight Type-B mines. (c) Seven Type-C mines.

in ζ̂, but the number of relaxations and the trend of spec-
tral amplitudes are the same as that of the other seven
Type-B mines. The average EMD between pairs of mines is
0.1536 decades.

Fig. 9(c) shows the DSRF of seven Type-C mines: low
metal content, magnetic, and weak EMI response antipersonnel
mines. The SNR ranges from about 20 to 35 dB. The spectra
are less consistent compared to that of Type-A and Type-B
mines, but notice that the prominent relaxations are all located
around log ζ = 5 decades. Since the response is weak, the noise
could move the relaxations around as observed in Fig. 9(c). The
average EMD between mine pairs is 0.1490 decades, which
is slightly lower than the average EMD in Fig. 9(b). This is
because the two prominent relaxations in Fig. 9(b) are farther
away from each other.

The estimated H(0) is normalized and shown in Fig. 10 for
the three types of mines. The normalized H(0) reflects the mag-
netic properties of the mines. Type-A mines are nonmagnetic
and therefore have a normalized H(0) close to zero. The other
two types of mines have a normalized H(0) well above zero
which reflects the magnetic content of the mines. Variations
in the estimated H(0) are consistent with the variations in
the DSRF.

Fig. 10. Normalized estimated H(0) for landmines in Fig. 9. H(0) is

normalized by
∑L

l=1
ĉl.

The variation of the estimated DSRF and H(0) could be
caused by several factors such as manufacturing variations,
corrosion, the magnetic properties of the soil, or measurement
errors. Manufacturing variations in the shape of the metal parts
and their electrical and magnetic properties can cause variations
in the DSRF. Corrosion can change the properties of the metal
parts which will change its response. We believe that mine #7
in Fig. 9(b) has a metal part slightly different from the other
seven instances. The lower normalized H(0) suggests a differ-
ent magnetic property, and the slightly different DSRF reaffirms
this small variation in the metal.

The response due to the magnetic properties of the soil
can also influence the DSRF since the response of the soil is
superimposed on the response of the target and it is not possible
to completely separate the two. For the mines shown Fig. 9(c),
we believe that the variation in the estimated H(0) is primarily
due to the magnetic properties of the soil. Since the magnetic
shift observed in the response of the soil is on the same order
of magnitude as the response of these mines, the soil can have
a strong influence on the mine responses. On the other hand,
mines shown in Fig. 9(b) have much stronger EMI responses,
and influence from the soil is therefore insignificant.

In general, landmine of one type has consistent estimated
DSRFs. These stable and recurring DSRFs could be a valuable
feature to be exploited in target discrimination. The estimated
H(0) can also be used as a feature when it is not overwhelmed
by the noise or ground response.

VI. CONCLUSION

The proposed method has been tested with a wide variety
of data, targets, and noise levels and has been found to give
stable, accurate, and quick estimates of the DSRF of a target.
When the DSRF cannot be exactly recovered, the estimate is an
approximation to the actual. In all cases, the estimated DSRF is
directly related to the physical properties of the target, and the
same DSRF is robustly estimated in different instances of the
same target.

In the future, more work can be put into investigating the
applicability of the proposed method, even in other fields of
science. In addition, the useful properties that the estimated
DSRF possesses suggest that the proposed method would be
a promising way to generate features for object identification.
More work can be put into designing classifiers based on the
estimated DSRF to provide more robust and reliable detectors.
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APPENDIX A
EMD

Given two distributions Ŝ = {(ζ̂i, ĉi) : i = 1, . . . , L} and
S = {(ζj , cj) : j = 1, . . . , K}, the EMD between the two
distributions can be computed by solving the optimization
problem [32]

Define dij = | log ζ̂i − log ζj | (12)

EMD(Ŝ, S) = min
fij

∑L
i=1

∑K
j=1 fijdij∑L

i=1

∑K
j=1 fij

(13)

subject to

K∑
j=1

fij ≤ ĉi, i = 1, . . . , L (14)

L∑
i=1

fij ≤ cj , j = 1, . . . , K (15)

L∑
i=1

K∑
j=1

fij = min

⎛
⎝ L∑

i=1

ĉi,

K∑
j=1

cj

⎞
⎠ (16)

fij ≥ 0, i = 1, . . . , L; j = 1, . . . , K (17)

where fij is an intermediate variable used during the optimiza-
tion. Adapting the illustration in Section III-A, Ŝ is the pile
of earth and S denotes the holes. Equation (14) guarantees no
overdraw from each pile of earth, (15) guarantees no over fill
at each hole, (16) sets the problem to fill up the holes with as
much earth as possible, and (17) allows only moving earth into
holes and not the reverse.

In our application, spectra should be normalized by having
the sum of all spectral amplitudes be unity (

∑
ci = 1). In this

case, the aforementioned optimization problem is simplified to
having the denominator in (13) be one and the right-hand side
of (16) be unity. The EMD also becomes symmetric.

APPENDIX B
DENSITY OF DISCRETIZATION OF THE

RELAXATION FREQUENCY SPACE

The number M in (5) decides the number of sample points
placed in a relaxation frequency range. Equivalently, M con-
trols the density of discretization of the ζ space. The denser
the discretization, the more likely the sampled ζ is close to the
true ζ. In the extreme case, if an infinite number of sample
points fill up the relaxation frequency range, there must be
one sampled ζ that coincides with the true ζ. Of course,
computationally, it would be impossible to estimate a DSRF
with an infinite number of sample points. Even if the number of
samples is kept finite, with a fixed number of observations N ,
the null space of Z̃ gets larger and larger as M increases, and
the number of possible bad estimates increases. It is therefore
desirable to have M just large enough, so that the estimate is
likely correct while the computational cost remains low.

Fig. 11. Monte Carlo simulation on density of discretization of ζ space.
Each point on the curve is the average EMD over 10 000 samples.

A Monte Carlo simulation on the density of discretization
of ζ space is performed over a range of M with different noise
levels. The simulation result is shown in Fig. 11, where a higher
EMD value means worse estimates. The figure suggests that
M should be greater than 60 to avoid bad estimation due to
not enough sample points, while M should be no greater than
200 because adding more sample points does not improve the
goodness of fit. We see that within the range 60 < M < 200,
at lower SNRs (50–60 dB), better estimation is obtained with
M ≈ 70. While at higher SNRs (65–80 dB), better estimation
is obtained with M ≈ 120. In other words, at lower SNR,
lower discretization density gives more robust performance,
which agrees with the intuition that larger dictionaries are more
sensitive to perturbation of noise. On the other hand, when
the SNR is high, higher discretization density delivers more
accurate estimates. To accommodate a wide range of SNR,
we compromise to have M ≈ 100, and since the relaxation
frequency range is about 4 decades, there are about 25 sample
points per decade.

Although the Monte Carlo simulation is performed on a two-
relaxation target, the result should well represent the behavior
of the estimation process in general. This is true as observed
in simulations of different DSRFs. We can therefore infer that,
in general, a good choice of M is around 25 sample points
per decade. As shown in the figure, the goodness of fit is not
sensitive to the chosen M given it is large enough, so there is
some freedom in choosing M .

APPENDIX C
CIRCUIT MODEL FOR TWO COPLANAR

COAXIAL CIRCULAR LOOPS

This section derives a theoretical approximation to the mag-
netic polarizability of two coplanar coaxial circular loops in
the low-frequency realm. A larger loop of radius r1 with wire
radius a1 is placed around a smaller loop of radius r2 with wire
radius a2. The wires have electric conductivity σ and relative
permeability μr. Two loops are on the same plane and share the
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Fig. 12. Circuit model for two coplanar coaxial circular loops.

same center. The wire radius is assumed to be much smaller
than the loop radius, i.e., a
 r. This configuration of two
coplanar coaxial circular loops can be modeled as a simple two
coupled LR circuits shown in Fig. 12.

The voltage V (s) induced by the incident magnetic field on
the loop is related to the incident magnetic excitation H inc in
Laplace domain through

V (s) = −sμ0H
incA (18)

where A is the loop area and μ0 is the permeability of free
space. Assume that the incident magnetic field is normal to the
plane containing the loops. In low frequency, the resistance R
of the loop is

R =
2r

a2σ
(19)

and the inductance L is [34]

L = rμ0

[(
1 +

a2

8r2

)
ln

(
8r

a

)
+

a2

24r2
− 2 +

μr

4

]
. (20)

The mutual inductance LM between the two loops is [35]

LM =
2μ
√

r1r2

k

[(
1− 1

2
k2

)
K(k)− E(k)

]
(21)

where

k2 =
4r1r2

(r1 + r2)2
(22)

and K and E are the complete elliptic integrals.
In Laplace domain, the system equation for the circuit is [16][

V1

V2

]
=

[
R1 + sL1 sLM

sLM R2 + sL2

] [
I1

I2

]
. (23)

Solve for the currents[
I1

I2

]
=

−sμ0H
inc

(R1 + sL1)(R2 + sL2)− (sLM )2

·
[

R2 + sL2 −sLM

−sLM R1 + sL1

] [
A1

A2

]
. (24)

The magnetic polarizabilityM is then

M(s)=
A1I1+A2I2

H inc
(25)

=
−sμ0

[
A2

1(R2+sL2)+A2
2(R1+sL1)−2sA1A2LM

]
(R1+sL1)(R2+sL2)−(sLM )2

.

(26)

Perform partial fraction expansion

M(s) = −s

(
Q1

s− s1
+

Q2

s− s2

)
(27)

= −(Q1 + Q2) +
Q1

1− s/s1
+

Q2

1− s/s2
(28)

where s1 and s2 are the roots of the denominator in (26) [18]

s1,2 =
−(R1L2 +R2L1)±

√
(R1L2−R2L1)2+4R1R2L2

M )
2 (L1L2−L2

M )
.

(29)

Variables Q1 and Q2 are simply

Q1 =
μ0

[
A2

1(R2+s1L2)+A2
2(R1+s1L1)−2s1A1A2LM

]
s1−s2

(30)

Q2 =
μ0

[
A2

1(R2+s2L2)+A2
2(R1+s2L1)−2s2A1A2LM

]
s2 − s1

.

(31)

By using (29)–(31), the DSRF of two coplanar coaxial circu-
lar loops can be computed. The relaxation frequency ζk = −sk

with corresponding spectral amplitude Qk.
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Estimation of the Discrete Spectrum of Relaxations
for Electromagnetic Induction Responses Using

�p-Regularized Least Squares for 0 ≤ p ≤ 1
Mu-Hsin Wei, Student Member, IEEE, James H. McClellan, Fellow, IEEE, and Waymond R. Scott, Jr., Fellow, IEEE

Abstract—The electromagnetic induction response of a target
can be accurately modeled by a sum of real exponentials. However,
in practice, it is difficult to obtain the model parameters from mea-
surements. We previously proposed a constrained linear method
that can robustly estimate the model parameters when they are
nonnegative. In this letter, we present a modified �p-regularized
least squares algorithm, for 0 ≤ p ≤ 1, that eliminates the non-
negative constraint. An empirical method for choosing the regu-
larization parameter is also studied. Using tests on synthetic data
and laboratory measurements, the proposed method is shown to
provide robust estimates of the model parameters in practice.

Index Terms—Electromagnetic induction (EMI), discrete spec-
trum of relaxation frequencies (DSRF), �1 minimization, sum of
exponentials.

I. INTRODUCTION

R ECENT research has shown that broadband electromag-
netic induction (EMI) sensors are capable of discriminat-

ing between certain types of targets [1], [2]. The EMI frequency
response H(ω) of a metallic target can be expressed as [3]

H(ω) = c0 +
K∑

k=1

ck

1 + jω/ζk
(1)

where c0 is the shift, K is the model order, ck denotes the
real spectral amplitudes, and ζk denotes the relaxation fre-
quencies. The parameter set S = {(ζk, ck) : k = 1, . . . , K} is
called the discrete spectrum of relaxation frequencies (DSRF)
or simply the spectrum; each pair (ζk, ck) is one relaxation.

It is advantageous to model the EMI signal with (1) because
the relaxation frequencies are invariant to target orientation, and
this is valuable in target detection. However, it is difficult in
practice to obtain the model parameters in (1) from a small
number of measurements. For most existing estimation meth-
ods, a good guess of the model order K is required for the fitting
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process to converge. Prior knowledge of K, however, is usually
unavailable. The highly correlated summands in (1) and the
nonlinear relation between H(ω) and ζk also make estimation
difficult. Most existing methods often give suboptimal solutions
that are far from the truth or return complex parameters that
sometimes lack physical meaning [4].

In [5], we proposed a constraint linear method that can
robustly estimate the DSRFs without prior knowledge of the
model order. The method however presumes nonnegative spec-
tra for the targets, which are valid for most targets using our
system [6]; however, some targets can have a spectrum with
positive and negative relaxations. In this letter, we propose an
estimation method using �p-regularized least squares (0 ≤ p ≤
1) that removes the nonnegative constraint. Since we ultimately
want to solve for the �0-regularized problem, more accurate
estimates may be obtained using p < 1 than p = 1 when ap-
proximating, as argued in [7]. As with the previously proposed
constrained optimization method, the �p method always returns
real model parameters and is stable under noise. While the
proposed method is presented here in a frequency-domain
application, the method can also be extended to time-domain
applications in a straightforward manner.

II. ESTIMATION METHOD

We formulate the DSRF estimation problem as a set of
linear equations, as described in [5, Sec. II]. When the target
response is measured at N distinct frequencies (ωmin = ω1 <
ω2 < · · · < ωN = ωmax), the problem can be written in a
matrix form

⎡
⎢⎢⎣
H(ω1)
H(ω2)

...
H(ωN )

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 1
1+jω1/ζ̃1

1
1+jω1/ζ̃2

· · · 1
1+jω1/ζ̃M

1 1
1+jω2/ζ̃1

1
1+jω2/ζ̃2

· · · 1
1+jω2/ζ̃M

...
...

...
. . .

...
1 1

1+jωN /ζ̃1

1
1+jωN /ζ̃2

· · · 1
1+jωN /ζ̃M

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Z̃

⎡
⎢⎢⎢⎢⎣

c̃0

c̃1

c̃2
...
c̃k

⎤
⎥⎥⎥⎥⎦

+ error

h̃ = Z̃c̃ + error (2)

where ζ̃m denotes the sampled relaxation frequencies, c̃m

denotes the corresponding spectral amplitude estimates, h is

1545-598X/$26.00 © 2010 IEEE
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the observation vector, and Z̃ is the overcomplete dictionary.
The sampled ζ̃m is generated by enumerating a large set of
M possible relaxation frequencies uniformly distributed in the
log-ζ space (M � K). c̃ is the weighted selector vec-
tor containing the shift estimator c̃0 followed by the spec-
tral amplitude estimators. We expect the solution for c̃ to
have many zero elements because M � K, i.e., c̃ will be
sparse.

We then utilize the �p-regularized least squares technique, for
0 ≤ p ≤ 1, because it promotes sparse solutions [8]

arg min
c̃
‖Z̃ ′c̃− h̃

′‖22 + λ‖c̃‖pp, 0 ≤ p ≤ 1

where Z̃
′
=

[ �e(Z̃)
�m(Z̃)

]
and h̃

′
=

[ �e(h̃)
�m(h̃)

]
(3)

where λ is the regularization parameter. Separating the real and
imaginary parts in Z̃ makes the whole system real. Ideally,
in the optimal c̃, only those c̃m with corresponding ζ̃m that
is near a true ζk will be nonzero, and they will take on
the correct spectral amplitudes ck. It follows that a DSRF
can then be deduced from the nonzero estimated c̃m and its
corresponding ζ̃m.

The �p-regularized least squares solution for p < 1 can be ap-
proximated by the iteratively reweighted �1 algorithm proposed
by Candès et al. [8]. The weights are updated as suggested in
[9]. We also adopt the ε-regularization technique used in the
same paper. In summary, (3) is approximated by the following
(see also [10]):

Algorithm 1: Approximated �p-regularized least squares

Input Z̃
′
, h′, p, λ, c̃0

1: c̃n ← c̃0

2: for k ← 0 to −8 step −1 do
3: ε← 10k

4: repeat
5: c̃n−1 ← c̃n

6: wn
i ← (|c̃n−1

i |+ ε)p−1

7: c̃n ← arg min ‖Z̃ ′c̃− h′‖22 + λ
∑M+1

i=1 wn
i |c̃i|

8: until ‖c̃n − c̃n−1‖2 <
√

ε/100
9: return c̃n

The �1 minimization problem in step 7 is solved by l1_ls,
which is a MATLAB optimizer proposed by Kim et al. [11]. We
have also found that normalizing the input data h, as well as
the columns of Z̃

′
, to have unit �2 norm increases the accuracy

of estimation. While it is often suggested to initialize c̃0 using
the least squares solution [9], we observe that setting entries
of c̃0 to all ones also seems to be effective and converges
faster. The nonzero entries of c̃ selected by (3), along with the
corresponding ζ̃m, are the relaxations needed in the estimated
DSRF, Ŝ = {(ζ̂l, ĉl) : l = 1, . . . , L}.

III. ESTIMATION RESULTS

The proposed estimation method is tested against syn-
thetic and laboratory data to show its functionality, accuracy,
and stability. The hardware system used is a wideband EMI
sensor operating at 21 frequencies that are approximately
logarithmically distributed over the range 300 Hz–90 kHz
(2.5 decades) [6]. The synthetic data are generated in accor-
dance with the hardware specification. The range of ζ for
estimation is chosen such that log(ζ̃min) and log(ζ̃max) are
2.45 and 6.62, respectively, i.e., 4.17 decades. All estimations
are performed with M = 100, and all presented spectra are
normalized such that

∑ |ci| = 1. Spectral amplitudes less than
10−5 are not displayed. All frequency responses are normalized
such that ‖h‖2 = 1. Unless specified, p = 0.5 is chosen as a
representative case. The regularization parameter λ is chosen
based on the method described in Section IV. The results
presented in this section may achieve higher accuracy with a
more sophisticated λ selection rule. Here, we demonstrate the
usability of the proposed algorithm with a simple λ selection
rule. See Section IV for more discussion on the choice of λ.

Notation: ζ and c are the true/theoretical relaxation frequen-
cies and spectral amplitudes; ζ̂ and ĉ are the estimates.

A. Dissimilarity Measure Between Two DSRFs

In order to evaluate the performance between the estimated
DSRF and the true spectrum, we need to define a measure of
dissimilarity that is appropriate for sparse spectra with multiple
peaks. We use the Earth Mover’s Distance (EMD) [12] which
quantifies the “amount of work” to morph one spectrum into
another. Strictly speaking, the EMD is only defined for positive
spectra, but we can account for negative spectral amplitudes by
defining the distance function between two relaxations (ζi, ci)
and (ζ̂j , ĉj) to be

dij =
{ | log ζi − log ζ̂j |, ciĉj ≥ 0

1 + | log ζi − log ζ̂j |, ciĉj < 0

which penalizes relaxations with different signs. Spectra are
made nonnegative and normalized prior to the EMD compu-
tation. Finally, notice that the EMD is measured in decades
because it is examined in the log-ζ space.

The EMD compares two spectra as a whole; thus, the effect
of very small amplitude relaxations is tiny in the EMD, and ne-
glecting these small components amounts to assuming that they
are near the noise level of the measured frequency response.

B. Synthetic Six-Relaxation DSRF

We test our method (using p = 0.5) on a six-relaxation DSRF
synthesized at 70-dB signal-to-noise ratio (SNR) with additive
white Gaussian noise (Fig. 1). This is a case that cannot be
handled by traditional nonlinear parameter optimization [4] or
the nonnegative linear method [5]. All six relaxation frequen-
cies are recovered by using Algorithm 1. The estimation is
nearly perfect, because the estimated model parameters are real,
and the deviation from truth is small. The EMD between the
estimated and the true DSRF is 0.01 decade. There is one extra
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Fig. 1. Estimation of a synthetic six-relaxation DSRF.

Fig. 2. Monte Carlo simulation on goodness of estimation versus SNR
performed on a four-relaxation DSRF. The sample size is 100 per SNR.

relaxation near log ζ = 5 in the estimated spectrum of Fig. 1,
but it has very small amplitude and can be safely neglected.

This spectrum is also estimated with p = 1 using l1_ls. In
this case, many extra relaxations are introduced by the fitting
process (Fig. 1); the EMD is 0.03. Real targets are not likely
to have a spectrum with many small relaxations around a
strong relaxation. In fact, Baum argues that physical relaxation
frequencies are discrete [3]. However, the small relaxations
introduced by p = 1 seem to give a continuous spectrum of
relaxation frequencies. In this sense, p < 1 gives a sparser
solution that more accurately resembles a physical spectrum,
even though this may not always be reflected in the EMD
measure.

C. SNR

To see how the proposed method performs in noise, a Monte
Carlo simulation versus SNR is performed. The true spectrum
is from a target with a four-relaxation DSRF including negative
relaxations. The simulation result, shown in Fig. 2, shows the
robustness of the estimation method at different SNRs. The
EMD between the estimate and the truth increases as the SNR
decreases. This suggests that the proposed method is usable
in a range of SNR, where the EMD is below some threshold.
This threshold, however, depends on the application of the es-
timated spectrum. For example, if the DSRF produces features
for classification, a more robust classifier may tolerate worse
estimations and, therefore, allow lower SNR. For our purpose,
spectra with an EMD below 0.1 are considered visually similar;
those with an EMD above 0.2 exhibit visual differences, but
may still resemble each other. In our laboratory measurements,
a typical SNR for loop targets is 70 dB.

Fig. 3. (a) Frequency response of three mutually orthogonal copper loops.
(b) Theoretical and estimated DSRFs of the response in (a).

D. Laboratory Data

We verify the functionality of the estimation method on
laboratory data, where we know the theoretical DSRF [13].
We examine a target that consists of three mutually orthogonal
copper loops. The loop diameters and thickness are 3/20, 4/30,
and 5/36, respectively, in cm/AWG.1 We pick a specific orien-
tation and position relative to the EMI sensor that best shows
the bipolar relaxation amplitudes in a spectrum. The target
frequency response of this configuration is shown in Fig. 3(a)
(the SNR is 38 dB) and its estimated DSRF in Fig. 3(b).
Theoretical data are also displayed. We see that the estimate
and theory agree well, and the EMD between the theoretical
and estimated DSRFs is 0.10 decades.

Next, we examine the changes in the DSRF as the target
moves relative to the EMI sensor. The same target configured
at a fixed orientation is displaced at different positions along
a horizontal axis, which we will call x. The vertical distance
between the target and sensor is 6 cm. The EMI sensor is
located at x = 0. Samples of the measured target responses are
shown in Fig. 4(a); their corresponding spectra are in Fig. 4(b).
Theoretical results are also shown. Overall, the theory and
measurement agree. The disagreement at x = −0.5 may be
because of approximations in the model and/or inaccuracies in
the positions measured in the experiment.

As expected from the theory, while the frequency response
changes dramatically as the target moves along the x axis,
the corresponding change in the spectral domain only occurs
in the spectral amplitudes. The three dominant relaxation fre-
quencies remain unchanged. The proposed method successfully

1American wire gauge.
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Fig. 4. Plots share the same annotation as Fig. 3. (a) Frequency responses of the three mutually orthogonal copper loops at different locations. (b) Theoretical
and estimated DSRFs of the corresponding responses in (a). The SNR is measured in decibels, the x positions in centimeters, and the EMD in decades.

estimates the spectra that agree with this phenomenon. All three
relaxation frequencies are consistently estimated. The extra
relaxations all have small amplitudes that can be safely ignored.
This invariant property of the relaxation frequencies makes the
DSRF valuable, particularly for target discrimination.

IV. CHOOSING λ

In this section, we first examine the behavior of the proposed
method in relation to the regularization parameter λ, and then,
we propose a simple λ selection rule exploiting the observed
properties of λ. All discussions and figures presented here
assume p = 0.5 unless otherwise specified.

To understand how the goodness of fit changes with λ and
SNR, we conduct a cross-validation-like simulation. First, we
build a collection of synthetic spectra with different model
orders and a variety of distributions of relaxations. For each
spectrum at a fixed SNR, the spectrum is estimated 100 times
for each λ within a range, and the average goodness of fit,
measured by the EMD between the available truth and the
estimate, is recorded. This is done for a range of SNRs. The
simulation result for a four-relaxation spectrum, as an example,
is shown in Fig. 5. We see that not only the EMD surface is well
behaved (i.e., smooth) with respect to the SNR and λ but also,
more importantly, the surface itself is convex shaped. Thus, at
each SNR, the minimum EMD is achievable by a unique λ. The
wide valley of the surface also shows that the goodness of fit is
not very sensitive near the optimal λ that gives the minimum
EMD per SNR.

Simulations of spectra for other model orders and distrib-
utions also exhibit the same property (Fig. 6). Moreover, the
valleys of the EMD surface all occur in nearly the same SNR-λ
region. In other words, the λ that produces the minimum EMD
at a given SNR is quasi-independent of the model order. Fig. 7
shows the averaged EMD of different model orders in Fig. 6.
The resulting surface still exhibits the properties described
earlier. This allows us to pick a near-optimal λ based solely
on the SNR.

Fig. 5. Mote Carlo simulation of the goodness of estimation (EMD) of a
four-relaxation spectrum at different SNRs and λ’s.

Fig. 6. Same simulation as in Fig. 5 but for spectra of different model orders
(one to six). Each spectrum constitutes one surface in the figure. All surfaces
have their minimum in the same SNR-λ region.
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Fig. 7. Average of EMD surfaces in Fig. 6. The curve with asterisk markers
traces out the optimal λ’s. The line with square markers is the approximated
optimal λ curve used to select λ in practical estimation.

Fig. 8. Goodness of fit using the linear log-λ selection rule for several p’s.
The true spectrum is the same as in Fig. 5. The dashed–dotted curves denote
the optimal λ, and the solid lines denote the linear log-λ selection rule.

From the data in Fig. 7, we can find the optimal λ at each
SNR, which is also plotted in the same figure. Using the wide-
valley property, we can achieve the near-minimum EMD by
choosing λ’s that are near the optimal λ in the valley. Here,
we approximate the optimal λ with a semilog function of SNR.
This is done by fitting the optimal log-λ curve with a linear
function. Weights may be added to promote certain SNRs that
are more important. For our problem setup, the λ is chosen by
(also shown in Fig. 7)

log λ = −0.05 · SNR− 2.2. (4)

In practice, this log-λ selection rule that is linear in SNR
allows the regularization parameter to be determined with neg-
ligible computation time. When processing the laboratory data,
we use (4) along with an estimate of the SNR to determine λ for
use in Algorithm 1. The same empirical method can be repeated

for other p’s, and the result is also a linear relationship between
log λ and SNR.

Fig. 8 shows the goodness of estimation of a four-relaxation
target using the linear log-λ selection rule and the optimal λ
which uses the true spectrum that is not available in practice.
We see a slight increase in the EMD when the linear log-λ
selection rule is used, which is reasonable and expected. The
increase is acceptable, and hence, the linear log-λ selection rule
is an appropriate λ selector.

Also shown in Fig. 8 are the performances of other p values.
It is shown that p < 1 gives more accurate results than p = 1
when the optimal λ is used, but this advantage is significantly
diminished when the linear log-λ selection rule is used. While
this lessens the advantages of using p < 1, we emphasize that
p = 1 tends to give estimates with many relaxation frequencies
while p < 1 gives sparser spectra which are more physically
accurate (see Section III-B). It is possible that both the accuracy
and sparsity advantages for p < 1 could be obtained with a
better λ selection rule. Lastly, since the performance of a certain
p value is dependent on the λ selection rule used, different
optimum p values would be determined if the λ selection rule
is changed.
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Abstract— A broadband electromagnetic induction (EMI) sensor 
is developed to help discriminate between buried land mines and 
metal clutter.  The detector uses simple dipole transmit and 
receive coils along with a secondary bucking transformer to 
mostly cancel the coupling between the coils.  The technique 
allows the cancellation that can be obtained using a quadrupole 
receive coil while maintaining the depth sensitivity and simple 
detection zone of a dipole coil.  Experimental results are 
presented for several targets. 

Keywords; Electromagnetic Induction, EMI, Mine, Lansmine, 
Metal Detector. 

I.  INTRODUCTION 
For many years, extensive effort has been expended 

developing techniques for efficiently locating buried 
landmines. For a mine detection technique to be successful 
there must be sufficient contrast between the properties of the 
mine and the earth. There also must be sufficient contrast 
between the properties of the mine and common types of 
clutter such as rocks, roots, cans, etc. so that the mine can be 
distinguished from the clutter.  The latter condition is the most 
problematic for most mine detection techniques.  For example, 
simple electromagnetic induction (EMI) sensors are capable of 
detecting most mines; however, they will also detect every 
buried metal object such as bottle tops, nails, shrapnel, bullets, 
etc.  This results in an unacceptable false alarm rate. This is 
even more problematic for low-metal anti-personnel mines as 
they are extremely difficult to distinguish from clutter using a 
simple EMI sensor.  In recent years, advanced EMI sensors that 
use a broad range of frequencies or a broad range of 
measurement times along with advanced signal processing 
have been shown to be capable of discrimination between 
buried land mines and many types of buried metal clutter [1-4].  
For these advanced EMI sensors to be effective, they must be 
able to accurately, repeatably, and quickly measure the 
response of a buried target.  This is difficult because the sensor 
must operate with bandwidths greater than 100 to 1 while 
accurately measuring signals that are more than 100 dB smaller 
than the direct coupling between the coils on the EMI sensor.  
In order to accomplish this, the EMI sensor must be very 

cleverly designed to account for the coupling and for the 
secondary effects such as resonances in the coils.   

In most EMI sensors, the coupling between the coils is 
handled by one of two methods.  In time-domain sensors, the 
coupling between the coils can be mostly removed by time 
gating if the coils are properly designed.  In frequency-domain 
sensors, the coupling is mostly removed by using a quadrupole 
receive coil which minimizes the mutual inductance between 
the coils.  The quadrupole receive coils have the disadvantage 
of being less sensitive to deeply buried targets and having a 
complicated detection zone when compared to a dipole receive 
coil.  

A technique is presented for canceling the coupling 
between the induction coils while maintaining the depth 
sensitivity and simple detection zone of a dipole coil.  Here, 
simple dipole transmit and receive coils are used along with a 
secondary bucking transformer to cancel the coupling between 
the coils.  A prototype system using this technique is presented 
that operates over the frequency range 300 Hz to 90 kHz.  
Sample measurements made with the system are shown.   

This work is supported in part by the U.S. Army Research Office under 
contract number W911NF-05-1-0257. 

Head Xfrm

Bucking Xfrm

Vs

RL

RL

VB

VH

L1
L2

L3

L2

LMB

LMH

I0

LM1 LM2

RT

Target

LT

 
 

Figure 1.  Basic configuration of the technique. 
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II. SYSTEM 
Figure 1 shows a basic diagram of the system where simple 

dipole transmit and receive coils are used along with a 
secondary transformer to cancel the direct coupling between 
the coils.  Here, the exciting current Io passes through the 
primary coils of both the bucking and head transformers and 
induces a voltage in the secondary transformers.  The voltage 
induced in the secondary windings of the head transformer 
depends on its mutual inductance as well as the coupling 
through the target:  
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The first term in the equation above is due to the direct 
coupling between the coils of the head transformer, and it is 
generally much larger than the second term which is due to the 
target.  The voltage induced in the secondary windings of the 
bucking transformer depends only on its mutual inductance:  
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The response of the target is obtained from the relation  
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if we make LMH=LMB.  This is the ideal response (scaled by 
LMB, LM1, and LM2) that we want to obtain with the direct 
coupling term eliminated.  It is difficult to exactly match the 
mutual inductances, so a simple voltage divider is used to 
compensate for the difference.  The transformers are not ideal 
and will have significant parasitic effects such as the 
distributed capacitance between the windings.  The parasitic 
elements can significantly reduce the effectiveness of the 
cancellation at the higher frequencies.  Additional elements 
were added to the circuit to mostly match the parasitics effects 
for the two transformers.  With these additional elements the 
resulting cancellation was greater than 60 dB across the entire 
frequency range.  To further enhance the cancellation, the 
response of the sensor in air is subtracted from the subsequent 
measurements. After the subtraction the effective cancellation 
is approximately 120 dB over the entire bandwidth of the 
sensor.  

 
The prototype system consists of a head constructed using 

PCB technology that has a transmit coil with a diameter of 
approximately 25 cm and a receive coil with a diameter of 
approximately 21 cm, as shown in Figure 2.  This is an 
improved version of the system presented previously [6].  The 
improvements include improved shielding of the EMI head and 
a much smaller bucking transformer made using a ferrite core.   

The coupling between the transmit and receive coils is not 
purely inductive as in the model, figure 1.  Part of the coupling 
is due to the capacitance between the transmit and receive 
coils.  The capacitive coupling can be comparable to or larger 
than the inductive coupling with the target.  The capacitive 
coupling can vary significantly as an unshielded EMI head is 
moved in close proximity to the soil and can mask/corrupt the 
inductive responses of the desired targets.  The effect is most 
problematic at the higher frequencies.  Ideally, the shield will 
completely eliminate the variations in the capacitive coupling 
due to the presence of the soil or other objects that are in close 
proximity to the head while not affecting the inductive 
coupling to the target.  The shield developed for this work is 
shown in figure 3.  The shield is made using PCB technology 
and consists of closely spaced conducting rings with a gap so 
the rings will not form closed loops.  The narrow width of the 
rings and the gap in the rings greatly reduce the eddy currents 
induced on the shield.  The eddy currents are undesirable 
because they corrupt the desired inductive response.  This 
shield has performed much better than the conductive Mylar 
shield used in the previous work. 

The data for the prototype system was taken at 21 
frequencies that were approximately logarithmically spaced 
from 330 HZ to 90.03 KHz.  The frequencies deviated from 
logarithmic spacing to minimize interference from power line 
harmonics.  A multi-sine excitation signal was generated using 
the 21 frequencies and used to excite the EMI sensor.  The 
response due to this multi-sine excitation was recorded in 0.1 s 
increments.  These time records were transformed into the 
frequency domain and used to construct the response of the 
sensor. 
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Figure 3.  Diagram of the shield for the EMI head. 
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III. EXPERIMETAL RESULTS 
The prototype system was used to collect data at a test 

faculty.  The test facility consisted of a number of lanes divided 
into 1.5 by 1.5 m squares. A target was buried at the center of 
most of the squares.  The data was collected in a lane based 
manner in which the sensor was pushed down the lane and the 
response was recorded in 0.1 s time increments along with the 
spatial location in the grid.  The response at the beginning of 
the grid is subtracted from the subsequent responses to partially 
remove the ground response.   

The response for three of the target types is shown in figure 
5 in two types of graphs.  For the graphs in the left column, the 
response at the center of the grid square is graphed on Argand 
diagrams where the imaginary part of the response is graphed 
as a function of the real part with frequency as a parameter.  
The curves are shifted along the real axis so that they are 
centered; this further removes part of the ground response 
which is mostly a shift in the real part of the response.  The 
response of a simple target with a single relaxation will form a 
perfect semicircle on this type of graph.  The fidelity of the 
data is generally apparent on this type of graph so it is a good 
way to show the measured data.  The shape of the curve is 
dependent on the shape of the buried object and can be used 
discriminate different targets from each other.  These graphs 
are very similar to the Cole-Cole graphs commonly used to 
show the complex permittivity of materials with dipolar type 
relaxations.   

The responses from eight different grid locations that 
contain TS-50 landmines with burial depths from 0 cm to 5 cm 
are plotted in figure 5a.  The eight curves are almost perfect 
scaled replicas of each other which demonstrates the 
consistency and the fidelity of the EMI sensor.  The curves 
form a portion of a semicircle indicating that this landmine has 
a single simple relaxation.  Only part of the semicircle is 
evident because of the limited frequency range of the 
measurement.  The variation in the size of the curves is due to 
the differences in burial depth.  The responses from six 
different grid locations that contain MAI-75 landmines with 
burial depths from 0 cm to 5 cm are plotted in figure 5b.  The 
shapes of the six curves are very similar to each other, again 
showing the consistency and the fidelity of the EMI sensor.  

The shapes of these curves are more complex than a semicircle 
indicating that this landmine has multiple relaxations.  The 
responses from three different grid squares which contain a 
buried 30 cm by 30 cm patio stone are shown in figure 5c.  One 
would not expect to see a response from the patio stone, but it 
is clearly evident.  The response may be due to the stone 
having a different conductivity [8] and/or permeability that the 
surrounding soil.  Using the frequency dependent response of 
the targets, it is possible to discriminate between landmines and 
many types of clutter [9]. 

The graphs on the right column of figure 5 are the response 
as a function of distance along the centerline of the grid.  The 
magnitude of the response is plotted for all 21 frequencies on 
these graphs. The response for these three graphs is peaked 
near the center of the grid and reaches a noise floor away from 
the center of the grid.  The noise floor is seen to be 
approximately 120 dB below VB.  The peak response for the 
TS-50 mine is about 80 dB below VB, for the MAI-75 mine is 
about 90 dB below VB, and for the patio stone is about 110 dB 
below VB. 
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Figure 4.   Cart based EMI data collection system. 
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Figure 5.   Respose plotted on an Argand diagram over the center of a) TS-50 anti-personnel landmines buried 0 to 5 cm deep, b) MAI-75 anti-
personnel landmines buried 0 to 5 cm deep, and c) patio stones buried 2.5 to 11 cm deep. Magnitude of the respose at the 21 measurment 
frequencies plotted as a function of downtract distance for d) a TS-50 landmine buried 5 cm deep, e) a MAI-75 landmine buried 5 cm 
deep, and patio stone buried 7.5 cm deep. 
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Abstract— A broadband electromagnetic induction (EMI) sensor 
is developed to help discriminate between buried landmines and 
metal clutter.  The detector uses a single dipole transmit coil and 
an array of three quadrapole receive coils.  The sensor operates 
in the frequency domain and collects data at 21 logarithmically 
spaced frequencies from 300 Hz to 90 kHz.  Experimental results 
are presented for several targets. 
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I. INTRODUCTION

For many years, extensive effort has been expended 
developing techniques for efficiently locating buried 
landmines. For a mine detection technique to be successful, 
there must be sufficient contrast between the properties of the 
mine and the earth. There also must be sufficient contrast 
between the properties of the mine and common types of 
clutter such as rocks, roots, cans, etc. so that the mine can be 
distinguished from the clutter.  The latter condition is the most 
problematic for most mine detection techniques.  For example, 
simple electromagnetic induction (EMI) sensors are capable of 
detecting most mines; however, they will also detect every 
buried metal object such as bottle tops, nails, shrapnel, bullets, 
etc.  This results in an unacceptable false alarm rate. This is 
even more problematic for low-metal anti-personnel mines as 
they are extremely difficult to distinguish from clutter using a 
simple EMI sensor.  In recent years, advanced EMI sensors that 
use a broad range of frequencies or a broad range of 
measurement times along with advanced signal processing 
have been shown to be capable of discrimination between 
buried land mines and many types of buried metal clutter [1-4].  
For these advanced EMI sensors to be effective, they must be 
able to accurately, repeatably, and quickly measure the 
response of a buried target with a bandwidth greater than 100 
to 1 while accurately measuring extremely weak signals.  

The sensor developed for this work uses a single dipole 
transmit coil and an array of three quadrapole receive coils 
constructed using PCB technology, as in figure 1.  A prototype 
system using this array is presented that operates over the 
frequency range 300 Hz to 90 kHz, a 300 to 1 bandwidth. This 
system evolved from an earlier system with a dipole receive 

coil [5]. Sample measurements made with the system are 
shown.   

II. SYSTEM

Figure 2 shows a basic diagram of the system with a dipole 
transmit and a quadrapole receive coil that are used along with 
a secondary reference transformer.  Here, the exciting current Io
passes through the primary coils of both the reference and head 
transformers and induces a voltage in the secondary of the 
transformers.  The voltage induced in the secondary windings 
of the head transformer depends on its direct coupling as well 
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Figure 1. Diagram of the qudrapole array. 
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Figure 2.   Schematic diagam of the system. 
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as the coupling through the target:  
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Here D( ) represents the direct coupling between the coils of 
the head transformer and is due to both the inductive and 
capacitive coupling between the coils.  The inductive and 
capacitive coupling between the transmit and receive coils is 
very small because of the manner in which the coils are wound. 
The voltage induced in the secondary coils of the reference 
transformer depends only on its mutual inductance:  
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The response of the target is obtained from the relation  
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where D( )/VR is obtained by measuring a response without a 
target present.    

The coupling between the coils of the EMI head and the 
target is not purely inductive as in the model, figure 2.  Part of 
the coupling is due to the capacitance between coils and the 
target.  The capacitive coupling can be comparable to or larger 
than the inductive coupling with the target.  The capacitive 
coupling can vary significantly as an unshielded EMI head is 
moved in close proximity to the soil and can mask/corrupt the 
inductive responses of the desired targets.  The effect is most 
problematic at the higher frequencies.  Thus, a shield is needed 
to lessen the capacitive interactions. Ideally, the shield will 
completely eliminate the variations in the capacitive coupling 
due to the presence of the soil or other objects that are in close 
proximity to the head while not affecting the inductive 
coupling to the target.  The shield developed for this work is 
similar to that developed earlier [5].  The shield is made using 
PCB technology and consists of closely spaced conducting 
rings with a gap so the rings will not form closed loops.  The 
narrow width of the rings and the gap in the rings greatly 
reduce the eddy currents induced on the shield.   

The data for the prototype system was taken at 21 
frequencies that were approximately logarithmically spaced 
from 330 HZ to 90.03 KHz.  The frequencies deviated from 
logarithmic spacing to minimize interference from power line 
harmonics.  A multi-sine excitation signal was generated using 
the 21 frequencies and used to excite the EMI sensor.  The 
response due to this multi-sine excitation was recorded in 0.1 s 
increments.  These time records were transformed into the 
frequency domain and used to construct the response of the 
sensor.  

III. EXPERIMENTAL RESULTS

The prototype system was used to collect data at a test 
facility.  The test facility consisted of a number of lanes divided 
into 1.5 by 1.5 m squares. A target was buried at the center of 
most of the squares.  The data was collected in a lane based 
manner in which the sensor was pushed down the lane and the 
response was recorded in 0.1 s time increments along with the 
down-track location in the grid.   

The measured data are filtered in the down-track direction 
by convolving the measured data with the zero-mean template 
shown in figure 4a.  The magnitude of the response for all 21 
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Figure 3.   Cart-based EMI data collection system. 
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Figure 4. a) Down-track filter template. Down-track response for b) 
unfiltered and c) filtered PMD mine 0 cm deep. Down-track 
response for d) unfiltered and e) filtered M14 mine 5 cm 
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frequencies is shown in figure 4 as a function of down-track 
distance for a PMN and an M-14 landmine before and after 
filtering.  The unfiltered response for both mines is weak 
directly above the mine and has a peak on either side of the 
mine due to the quadrapole receive coil.  The filter has four 
beneficial effects.  First, it mostly removes the ground response 
by differencing closely located portions of the ground.  Second, 
it mostly removes the drift in the system by differencing 
measurements made only a short time apart.  Third, it averages 
the data over several locations which will improve the signal to 
noise ratio.  Fourth, the filtered data has a maximum directly 
over the target, while the unfiltered data has a minimum 
directly over the target.  The filtered response of the M14 mine 
is much better defined than that of the unfiltered response.  The 
noise floor is approximately -135 dB for the filtered response, 
which is about 10 dB better than for the unfiltered response.  
Note that the peak response for the M-14 mine is very weak, 
about -120 dB, while the response for the PMN mine is much 
stronger. 

The response from multiple occurrences of four landmines 
is shown in figure 5 for all three receive channels when the 
landmine is approximately below the center receive head. The 
responses are graphed on Argand diagrams where the 
imaginary part of the response is graphed as a function of the 
real part with frequency as a parameter.  The curves are shifted 
along the real axis so that they are centered; this further 
removes part of the ground response which is mostly a shift in 
the real part of the response.  The fidelity of the data is 
generally apparent on this type of graph which makes it is a 
good way to show the measured data.  These graphs are very 
similar to the Cole-Cole graphs commonly used to show the 
complex permittivity of materials with dipolar type relaxations.   

The shapes of the curves on the Argand diagrams are 
indicative of the type and distribution of metal in a target.  The 
response of a simple target with a single relaxation will form a 
perfect semicircle on this type of graph.  The response of each 
of the mines has a characteristic shape.  The M-14 has a shape 
that is almost a semicircle indicating that its response is mostly 
due to a single relaxation.  The other mines have more complex 
shapes indicating that their response is due to multiple 
relaxations.  Note that the shapes of the curves for each mine 
are consistent in that they are scaled replicas of each other.  
The scaling of the response is due to the burial depth of the 
mine.  The response is weaker of the deeper mines. Because 
these shapes of the different targets are quite different, it is 
possible to discriminate between some landmines and many 
types of clutter [6].  

The response from the center channel is stronger than the 
side channels for all of the mines, as expected.  The response is 
strongest in the channel closet to the mine.  The response in the 
side channels is apparent on these graphs for a few of the mines 
when they are slightly off center.  Note that the shape of the 
response in the side channels is almost the same as in the center 
channel. The response of the stronger mines would be readily 
apparent in a graph like figure 4 due to the higher dynamic 
range of the graph.    

The responses at the center of the blank grid locations are 
graphed on Argand diagram in figure 6.  Ideally these 

responses will be zero; however, they are clearly nonzero and 
have a defined structure.  The responses mostly take the shape 
of a line parallel to the real axis with a length proportional to 
their imaginary part. The real part is approximately 
proportional to ln(f).  This response is believed to be due to the 
magnetic response of the soil which is not completely removed 
by the down-track filter since the magnetic properties of the 
soil vary with position.  This response is very similar to that 
due to a magnetic material with a uniform logarithmic 
distribution of relaxation times [7-9].  
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Figure 6.  Respose plotted on an Argand diagram over the 
center of empty grid locations. 
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d) 
Figure 5.  Response of four mines plotted on an Argand diagram for the left, center, and right receive coils when a mine is below the center of the 

array: a) PMN, b) VS-50, c) MAI-68, and d) M-14 anti-personnel landmines.  There are 6 to 8 occurrences of each mine which are 
buried between 0 and 5 cm deep.   
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ABSTRACT

The EMI response of a target can be accurately modeled by

a sum of real exponentials. However, it is difficult to obtain

the model parameters from measurements when the number

of exponentials in the sum is unknown. In this paper, a con-

strained linear method for estimating the parameters is for-

mulated by enumerating the relaxation parameter space and

imposing a nonnegative constraint on the parameters. Using

tests on synthetic data and laboratory measurement of known

targets the proposed method is shown to provide accurate and

stable estimates of the model parameters. The estimated pa-

rameters are then used to cluster different targets types for

classification.

Index Terms— Electromagnetic induction (EMI), dis-

crete spectrum of relaxation frequencies (DSRF), sum of

exponentials, magnetic polarizabilities, detection.

1. INTRODUCTION

Recent research has shown that broadband electromagnetic

induction (EMI) sensors together with advanced signal pro-

cessing is capable of discriminating between certain types of

buried targets [1]. The EMI response of a metallic target can

be accurately modeled by a sum of real exponentials [2]. In

the frequency domain, an EMI target response H(ω), which

is proportional to a projection of the magnetic polarizability

tensor of the target, can be expressed as:

H(ω) = c0 +
K∑

k=1

ck

1 + jω/ζk
(1)

where c0 is the shift, K the model order, ck the real spectral

amplitudes, and ζk the relaxation frequencies. The frequency

response can be characterized by the set S = {(ζk, ck) : k =
1 . . . K} which we will call the Discrete Spectrum of Relax-

ation Frequencies (DSRF). Each pair (ζk, ck) is one relax-

ation. The response at zero frequency H(0) =
∑K

k=0 ck is

due to the DC magnetization of the target. The term DSRF

and spectrum will be used interchangeably.

It is difficult in practice to obtain the model parameters

in (1) from measurements. For most existing estimation meth-

ods, a good guess of the model order K is required for the

fitting process to converge. Prior knowledge of K, however,

is usually impossible to obtain. The highly correlated sum-

mands in (1) and the nonlinear relation between ck and ζk

also make estimation difficult. Most existing methods often

suffer from (a) sub-optimal solutions that are far from the

truth and (b) complex parameters that do not have physical

meaning [3].

In this paper, we present a constrained DSRF estimation

method that requires no prior knowledge of K and always

returns real parameters. We demonstrate its robustness with

results on synthetic, laboratory, and field data. We also pro-

pose using the DSRF in target discrimination by showing how

to cluster DSRFs of eleven types of targets.

2. A CONSTRAINED ESTIMATION METHOD

When the target response is measured at N distinct frequen-

cies, (1) can be written in matrix form:

⎡
⎢⎢⎢⎣

H(ω1)
H(ω2)

...

H(ωN )

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 1
1+jω1/ζ1

1
1+jω1/ζ2

. . . 1
1+jω1/ζK

1 1
1+jω2/ζ1

1
1+jω2/ζ2

. . . 1
1+jω2/ζK

...
...

...
. . .

...

1 1
1+jωN /ζ1

1
1+jωN /ζ2

. . . 1
1+jωN /ζK

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Z

⎡
⎢⎢⎢⎢⎢⎣

c0

c1

c2

...

cK

⎤
⎥⎥⎥⎥⎥⎦

h = Zc (2)

where ωmin = ω1 < ω2 < · · · < ωN = ωmax, h is the

observation vector, c the spectral amplitude vector augmented

by the shift c0, and Z a matrix containing information about

the relaxation frequencies ζ.

To estimate the DSRF (i.e., ζk and ck) from a given ob-

servation h, the usual approach is to minimize the norm of

the error, but this leads to a nonlinear optimization problem.

Instead, we follow the strategy of basis pursuit to linearize the

problem with an overcomplete dictionary. The overcomplete

dictionary is a matrix Z̃ that has the same form as Z in (2),
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but with many more columns. To generate the columns, we

enumerate a large set of M (M � K) possible relaxation fre-

quencies uniformly distributed in the log-ζ space, and create

one column for each enumerated ζ [4].

Since the matrix Z̃ has (M+1) columns, we redefine the

unknown as an (M+1)-element weighted selector vector c̃
and rewrite the problem as:

h = Z̃c̃ + error (3)

where we expect the solution for c̃ to have many zero ele-

ments because M � K. The vector c̃ contains the shift es-

timator c̃0 followed by the spectral amplitude estimators c̃m.

Ideally, when the error between h and Z̃c̃ is minimized, only

those c̃m with corresponding ζ̃m that are near a true ζk will

be nonzero, and they will take on the correct spectral ampli-

tudes ck. It follows that a DSRF can then be deduced from

the nonzero estimated c̃m and their corresponding ζ̃m.

Since M is also much greater than N , the system in (3)

is underdetermined and there is not an unique c̃ to minimize

the error. Any vector in the null space of Z̃ can be added

to c̃ without changing the error. In the EMI application, we

have found that imposing a nonnegative constraint on c̃ ef-

fectively eliminates a large portion of the null space of Z̃ and

the remaining solution space contains reasonable answers.

Although the assumption of nonnegative spectral amplitudes

cannot be rigorously justified at present, it works well in

practice, and can be used where applicable. Mathematically,

the DSRF can be found by optimizing:

arg min
c̃
||Z̃ ′

c̃− h′|| subject to c̃ ≥ 0 (4)

where Z̃
′
=

[
Re(Z̃)
Im(Z̃)

]
and h′ =

[
Re(h)
Im(h)

]

which can be easily implemented using lsqnonneg or CVX
in MATLAB. Separating the real and imaginary parts makes

the whole system real. The first element in c̃, c̃0, can be made

nonnegative by adding a sufficiently large value to h. We

have also found that normalizing the input data h to have an

�2 norm of unity increases the accuracy of estimation.

We have observed that in the estimated DSRF, an expected

relaxation (ζtrue, ctrue) often gets split into two peaks located

at the two sample points adjacent to ζtrue. Furthermore, the

two estimated spectral amplitudes add up to the true spectral

amplitude ctrue, and ζtrue is closer to the ζ̃ with larger c̃. We

can reverse this splitting processes through interpolation of

adjacent relaxations [4].

After the interpolation is performed, any c̃m with a value

of zero is eliminated along with its corresponding ζ̃m. We

denote the resulting relaxation frequencies as ζ̂l, with spectral

amplitudes, ĉl, or in vector notation, ζ̂ and ĉ, both with length

L. The estimated DSRF Ŝ = {(ζ̂l, ĉl) : l = 1 . . . L} is then

compactly stored in ζ̂ and ĉ. In addition, the vector length L
is an estimate of the model order K.

Table 1. Estimation of a six-relaxation DSRF

ck 0.18 0.12 0.18 0.24 0.18 0.12
log ζk 3.10 3.52 4.30 5.04 5.62 6.20

ĉl 0.17 0.12 0.17 0.24 0.18 0.11 0.01
log ζ̂l 3.09 3.51 4.29 5.05 5.64 6.25 4.52

3. ESTIMATION RESULTS

In this section, the proposed estimation method is tested

against synthetic, laboratory, and field data to show its func-

tionality, accuracy, and stability. The hardware system used is

a wideband EMI sensor operating at 21 frequencies approx-

imately logarithmically distributed over the range 300 Hz–

90 kHz. The measured data is post processed by a down-track

filter that is important to make the nonnegative constraint

applicable for this system [5]. The synthetic data is generated

in accordance with the hardware specification. The range of

ζ for estimation is chosen such that log(ζ̃min) and log(ζ̃max)

are 2.45 and 6.62, respectively. All estimations are performed

with with M = 100, and all presented spectra are normalized

such that
∑

i=1 ci = 1.

Notation: ζ and c are the true/theoretical relaxation frequen-

cies and spectral amplitudes; ζ̂ and ĉ are the estimates.

3.1. Dissimilarity Measure Between Two DSRF

Before we can evaluate the goodness of estimation, some kind

of measure is needed to assess the dissimilarity between the

estimated DSRF and the truth. The Earth Mover’s Distance

(EMD) [6] is a measure that can consistently quantify the dis-

similarity between two spectra even when they have different

numbers of relaxations. Intuitively, the EMD measures how

much work it takes to morph one spectrum into the other. In

the case of the DSRF, spectra are normalized prior to com-

puting the EMD. Finally, the EMD is measured in decades

because it is almost always examined in log-ζ space.

3.2. Synthetic Six-relaxation DSRF

We test our method on a six-relaxation DSRF synthesized at

70 dB SNR with AWGN (Table 1). This is a case that can-

not be handled by traditional nonlinear parameter optimiza-

tion which tends to get complex-valued estimates [3]. All six

relaxation frequencies are correctly recovered by solving (4).

The estimated model parameters are real, and the deviation

from truth is small. The EMD between the estimated and the

true DSRF is 0.02 decades. There is a seventh relaxation in

the estimate introduced by the noise, but its spectral ampli-

tude is small. Thus the proposed method returns a satisfactory

result even when the model order is high and unknown.
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Fig. 1. (a) Laboratory measured frequency response of two

coplanar coaxial circular loops. Responses are normalized

such that ‖h‖2 = 1. (b) Theoretical and estimated DSRF.

log ζk and ck are (4.76 6.07) and (0.50 0.50), respectively.

log ζ̂l and ĉl are (4.78 6.05) and (0.49 0.51), respectively.

3.3. Two Coplanar Coaxial Circular Loops

For laboratory data, a target with two coplanar coaxial circu-

lar loops of copper wire was constructed. The circumferences

of the two loops were chosen to be 200 mm and 150 mm. The

larger loop has a wire radius of 0.06 mm, and the smaller one

of 0.32 mm. A theoretical EMI response and the DSRF of this

target can be found in [4]. The EMI response of this target was

measured in the laboratory and is shown in Fig. 1(a), and the

estimated and theoretical DSRF are displayed in Fig. 1(b).

The estimated DSRF deviates from the theory slightly with

an EMD of 0.03 decades. We believe this is mostly due to

the thin-wire approximation used in the theory. We can safely

conclude that this estimated DSRF is an accurate representa-

tion of the physical DSRF of the target.

3.4. Field Data

As a final demonstration of the proposed method, we estimate

the DSRF of two types of landmines (Fig. 2), which are buried

at different depths and locations. The DSRF of each sample

was estimated and then plotted together with others of the

same type. The average EMD between all pairs of the seven

mines presented in Fig. 2(a) is 0.06 decades, and 0.07 decades

for the eight mines in Fig. 2(b). In both types of mines, we

76543

1

2

3

4

5

6

7

logζ (decade)

M
in

e 
N

um
be

r

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

3 4 5 6 7

1

2

3

4

5

6

7

8

logζ
S

am
pl

e

 

 

0

0.1

0.2

0.3

0.4

(b)

Fig. 2. Estimated DSRF of real landmines. The spectral

amplitude is represented by the intensity: darker the color,

larger the amplitude. (a) Low-metal content, moderate EMI

response antipersonnel mines. (b) Low-metal content, strong

EMI response antipersonnel mines.

observe stability and consistency in the estimated DSRF. The

small variation in the estimated DSRF could be caused by sev-

eral issues such as manufacturing variations, corrosion, the

magnetic properties of the soil, or measurement errors. In-

deed, not all landmines have similar estimated DSRFs, but,

as we see in the next section, a landmine usually has an esti-

mated DSRF similar to others of the same type.

4. APPLICATION

In this section, we explore the possibility of using the DSRF

in target discrimination. We choose one hundred indepen-

dently measured field samples from eleven types of landmines

and various metal clutter objects [5]. We then compute the

EMD between all pairs of DSRFs in order to generate the dis-

similarity map shown in Fig. 3. The diagonal is zero because

that is the EMD between a DSRF and itself which is zero.

We clearly see that mines of the same type are, in EMD

units, close to each other, meaning mines of the same type are

similar. Mines of type I do not have small EMD among its

sample pairs. The reason is unclear, but we speculate that this

target has negative components in its spectrum and thus the

estimated DSRF is inaccurate. Mines and clutter, on the other

hand, are far from each other, with few exceptions. Clutter
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Fig. 3. The EMD between samples from eleven types of mines (A to K) and metal clutter. Darker colors denote smaller

distances which indicate that two samples are more similar.

that is similar to mines may cause false alarms, but notice that

the EMD from clutter to any type of mine is mostly smaller

than the EMD within that mine type. The plot simply shows

the clustering of mines and suggests the applicability of the

DSRF for target discrimination.

5. CONCLUSIONS

We have examined the performance of the proposed DSRF

method and shown its potential for target discrimination. The

proposed method gives accurate and stable estimates of the

DSRF with a variety of data. Future work will be directed

at developing new algorithms that permit us to drop the non-

negative constraint, as well as designing more sophisticated

classifiers based on the estimated DSRF to provide more ro-

bust and reliable detectors.
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ABSTRACT

A broadband quadrapole electromagnetic induction (EMI) array with one transmitter and three receiver coils
is built for detecting buried metallic targets. In this paper, it is shown that the locations of multiple metallic
targets including their depth and cross-range position can be estimated accurately with the EMI array using
an orthogonal matching pursuit (OMP) approach. Conventional OMP approaches use measurement dictionaries
generated for each possible target space point which results in huge dictionaries for the 3D location problem.
This paper exploits the inherent shifting properties of the scanning system to reduce the size of the dictionary
used in OMP and to lower the computation cost for possibly a real-time EMI location estimation system. The
method is tested on both simulated and experimental data collected over metal spheres at different depths and
accurate location estimates were obtained. This method allows EMI to be used as a pre-screener and results in
valuable location estimates that could be used by a multi-modal GPR or other sensor for enhanced operation.

Keywords: Electromagnetic Induction Sensor, Depth Estimation, Orthogonal Matching Pursuit, Location Es-
timation

1. INTRODUCTION

Electromagnetic Induction (EMI) is a very popular method used to detect the presence of metallic content in
subsurface targets. EMI sensors work by affecting a region of interest with a time varying magnetic field and
detecting the induced magnetic field generated by the eddy currents on the metallic target [1]. Much research has
been performed on using EMI to detect buried targets such landmines, UXO, etc.; however, much less work has
been performed on making accurate estimates for the location of the target. The depth and cross-range location
of the target is of particular interest here, because the down-track location of the targets are fairly apparent in
the raw data from the sensor. Difficulties arise in making the location estimates, because of the nature of the
EMI response. First, the EMI response doesn’t measure a quantity like time delay in a radar which is directly
proportional to distance. Second, the relationship between the strength and object distance is nonlinear and
depends heavily on the objects size and metal content. A deep high-metal target could generate a stronger field
strength than a shallow low-metal target. In [2], a polynomial curve is fitted to vertical gradient data and a
classification scheme as “shallow” or “deep” is followed rather than a depth estimate. The results are rough and
show a depth resolution of ±8 inches which is not sufficient for most applications such as landmine detection.
In [3], it is observed that the more distant signals have relatively stronger low frequency components and shallow
targets provide stronger high frequency signals. However, no method to estimate the depth was presented.

In this paper, we propose a new method for location estimation of metallic targets in both depth and cross
range using EMI data. Our technique uses the relative strength of the measured response at the receive coils
of the EMI array along with the shape of the down-track response from the receive coils to make a location
estimate. To use this information, the target space is discretized to generate a list of possible target positions
and a model EMI response is generated for each target position to form an overcomplete dictionary of responses.
Many methods have been developed to extract an optimal representation of received signal in terns of the given
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dictionary elements and this kind of search is generally called Basis Pursuit [4]. We use a type of basis pursuit
algorithm, called orthogonal matching pursuit (OMP) [5], to extract the location information. Conventional
OMP approaches use measurement dictionaries generated for each possible target space point which results in
huge dictionary sizes for 3D location estimates. This paper exploits the inherent shifting property of the scanning
system to reduce the size of the dictionary used in OMP and thereby reduces the computation cost which is
necessary for a real-time EMI location estimation system.

Section 2 describes the EMI model data calculation, the dictionary generation process and the location
estimation algorithm. In Section 3 experimental results with performance analysis are provided. Conclusions
and future work are discussed in Section 4.

2. THEORY

2.1. EMI Model Data

In the EMI model, a transmitter generates a magnetic field, represented with a vector hT , at the target position
as shown in Fig. 1. Here hT is a 3×1 vector containing the x, y and z components of the magnetic field generated
by the transmitter coil, and hR is the receiver magnetic field vector at the target position when the receiver coil
is used as a transmitter. These fields are calculated using the Bio-Savart law by dividing the coils into short line
segments. The target is treated as a point target that can be modeled by the magnetic polarizability tensor, M .
It can be shown by using reciprocity that the received voltage due to the target is

VRec =
jωμ

IR
hT

RMhT (1)

Here M can be viewed as a 3× 3 symmetric matrix that represents the magnetic polarizability tensor of the
target. For a metallic sphere, the tensor is diagonal M = M0I. The response measured by the EMI detector is

R =
VRec

VRef
=

μ

LRefIT IR
hT

RMhT (2)

where the response is referenced to the voltage

VRef = jωLRefIT . (3)

Figure 1. EMI scenario. hT is the magnetic field vector generated by transmitter. M is the magnetic polarizibility of
the target. hR is the magnetic field vector if the receiver was used as the transmitter. VRec is the voltage measured at
the receiver.

This EMI sensor measures the response at 21 logarithmically spaced frequencies from 330Hz to 90.03 kHz
for all the receive coils and records them every 0.1 s [6]. However, this work will only use the peak value of the
imaginary part of the response because the method is based on relative amplitudes

Assume the quadrapole EMI array shown in Fig. 2 is scanned in the y direction to search the subsurface for
targets. The response (2) for the three receivers is graphed in Fig. 3 as a function of the scan position with
depth as a parameter for a target at (x, y) = (0.17, 0)m buried at depths from 2 to 30 cm in 1 cm increments.
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Figure 2. Quadrapole Array used for target localization.

The shape of the response as a function of scan position change noticeably as the target depth increases, and the
relative amplitudes for the response of the receivers also change as a function of the target depth. The changes
are more pronounced for shallow targets; less pronounced for deeper ones. Our proposed method collects all of
these models into a dictionary of EMI responses for each possible target space point.
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Figure 3. Normalized response for targets from 2 cm to 30 cm deep using the quadrapole array for (a) Receiver 1, (b)
Receiver 2, (c) Receiver 3.

The other important location estimation parameter is the cross range, i.e., the x position of the target. The
response is graphed as a function of scan position with the cross range as a parameter in Fig. 4. The target is
at y = 0 and z = −6 cm with a cross range that varies from x = 0 to 34 cm with 2 cm increments as the array is
scanned from y = −30 to y = 30 cm with 1 cm increments. The information of relative amplitude between the
receivers as well as the shape of the response plays a very important role in estimating the cross range of the
targets accurately.

2.2. Creating Dictionary of EMI Responses

To create a dictionary, Ψ, of EMI responses the target space πT which lies in the product space [xi, xf ]×[yi, yf ]×
[zi, zf ] must be discretized to create a finite set of possible target space points. Here (xi, yi, zi) and (xf , yf , zf )
denote the initial and final positions of the target space along each axis. Hence, for any target position and at
any scan location the received voltage can be calculated by (2) by setting α = 1 and M = I (assuming spherical
targets). The dimensions of the dictionary Ψ will be L ×N where L is the number of scan points in the scan
direction. While working with such a matrix is managable with scanning for a 2D slice of target space, for 3D
target localization the number of target space points increases drastically depending on the resolution required,
making it unrealistic to work with the dictionary Ψ. For example, localizing targets in an 1 × 1 × 1 m3 area
with 1 cm resolution would require a dictionary size of L × 106. However, with a regular scanning pattern we
can exploit a shift-invariance property of the scanning to decrease the size of the dictionary.
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Figure 4. Normalized voltage values recorded at the receiver coils for targets at y = 0, z = −6 cm but varying in cross
range with x = 0 to x = 34 cm using the quadrapole array for (a) Receiver 1, (b) Receiver 2, (c) Receiver 3.

Figure 5 shows a three-receiver, one-transmitter quadrapole array scanning along the y direction. As the
array scans targets having shifted y locations but the same cross-range (x) and depth (z) values, the resulting
responses in the receiver coils are shifted versions of each other. Hence it is sufficient to create a dictionary for
the y = 0 cross range slice, and then use it to locate targets in 3D.

Figure 5. Quadrapole array scanning on y direction. Targets having the same x and z values create responses that are
shifted versions of each other

So only the target space slice [xi, xf ]× [zi, zf ] is used to create the dictionary Ψ. Discretization generates a
finite set of target points B = {π1, π2, . . . , πN}, where N determines the resolution and each πj is a 3D vector
[xj , 0, zj]. Creating the dictionary requires the calculation of all received voltage values for each πj in the target
space. The jth column of the dictionary is the voltage levels vj at the EMI receiver when only the target at πj

is present. If an array of receivers is used then the jth column of the dictionary is generated by stacking the
voltages vj,i i = 1, 2, . . . , RN as vj = [vj,1; vj,2; . . . ; vj,RN ], where RN is the number of receivers in the EMI
array. Finally, each column is normalized to have norm one to weight each target space point equally. After
normalization each receiver dictionary Ψi can be separated. Using an EMI array of receivers and creating the
dictionary by stacking up their voltage recordings before normalization allows us to use the relative amplitudes
between the receivers for better cross range resolution.

2.3. Location Estimation with Orthogonal Matching Pursuit

We assume that the observed signals at the receivers are linear combinations of the responses from each target
alone, thus the inter-target interaction is negligible. In this case, the following procedure is used to locate the
targets:

1. Observe di, i = 1, 2, ..RN voltage values at each receiver i; so d = [d1; ..; dRN ]. Initialize row and column
index sets: Λ0,r = ∅ and Λ0,c = ∅, the residual r0 = d and the loop index to t = 1.

2. Generate projection matrixes P i = ri ∗ Ψi where the operator ‘*’ means columnwise convolution. Sum
individual projection matrixes P =

∑
P i
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3. Determine the row and column indexes λt,r and λt,c for which P is maximized.

4. Update the index sets Λt,r ← Λt−1,r ∪ λt,r and Λt,c ← Λt−1,c ∪ λt,c

5. Find the weights c of the least-squares problem min ‖d−∑t
k=1 c(λk,c)Ψλk,c

‖2
6. Compute the new residual using the least-squares weights c: rt = d−∑t

k=1 c(λk,c)Ψλk,c

7. Increment the loop counter: t← t + 1

8. If the stopping criteria has not been met, return to Step 2.

One can halt the procedure when the norm of the residual rt declines below a specified threshold which could
be selected based on the noise energy in the received data. The target location information is stored in the row
and column index sets Λt,r and Λt,c. The row index set Λt,r shows the shift in the scan direction from the y = 0
slice. The cross range information is stored in Λt,c. The cross range and depth of the targets are πΛt,c .

3. RESULTS
To demonstrate the steps of the algorithm, consider a 2D simulation that uses a simple head with only one
receiver, as in Fig. 7(a). The simple head scans with x = 0 cm from y = −30 cm to y = 30 cm with 1 cm
increments. Assume there are two metal spheres at (0,−19,−3.5)cm and at (0, 11, 6.5) cm as shown in Fig. 6(a).
As the simple head scans the region the recorded voltage values with a signal to noise ratio (SNR) of 20 dB is
shown in Fig. 6(b).∗
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Figure 6. (a) Target space containing two targets. (b) Noisy voltage measurements (c) Projection of the measurements
to each column of response dictionary (d) OMP result.

The EMI response dictionary is created with a resolution of 1 cm in y and 0.5 cm in z. One possible solution is
to directly check the projection values of the received voltage measurements to each column of the EMI response
matrix. Figure 6(c) shows the image containing these projection values in dB scale. It can be observed that it
is directly very hard to extract the locations and the number of targets from direct projections. However, the
OMP selects two targets at (0,−19,−3.5)cm and (0, 11, 8) cm. Although the depth information for the second
target is 1.5 cm off, the locations and number of targets could be extracted with an acceptable error margin. The
following results also indicate that using multiple receivers increases the accuracy of cross-range estimation.

3.1. Laboratory Depth Estimation with Quadrapole Head
To test the proposed algorithm with experimental data the quadrapole sensor in Fig. 7(a) is built. The simple
quadrapole sensor is placed with its center at x = y = z = 0 and a metal sphere of diameter 0.5” is scanned
along the track shown in Fig. 7(b) from 2 to 35 cm above the sensor level. The air response of the target-free
environment is also measured and subtracted from the measurements with the target to reduce the effect of any
background, e.g., moving devices and the laboratory room. The proposed algorithm is applied to air response
subtracted raw data. The estimated depth values for the quadrapole sensor are shown in Fig. 7(c).

It can be observed that using the quadrapole sensor allows estimation of most depths very accurately. It is
important to note here that the target is a metal sphere which matches with the model we used in dictionary
generation. Also the noise level in the laboratory data is minimal once the air and lab responses are subtracted.

∗Here the two targets are assumed to be far enough apart so that the interaction between them is negligible.
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Figure 7. (a) Single Quadrapole Sensor, (b) Metal Sphere Track, (c) Depth estimates using quadrapole data.

3.2. Noise Performance

To analyze performance versus additive noise, the algorithm is applied to data created with targets at different
depths from 0 to 20 cm and with varying noise levels from 10 to 50dB. For each noise level and target depth,
zero-mean gaussian noise is added to the data model for the given depth. Then the depth of the target is
estimated for 100 independent trials with the proposed method. Figure 8 shows the variance from the true
target position for the quadrapole sensor at each SNR level and target depth. It can be observed that even for

Figure 8. Variance of the depth estimates for varying levels of SNR and for targets at different depths using a single
quadrapole sensor.

the case of 10dB SNR the standard deviation of the depth estimate for the quadrapole sensor is around ±2 cm.
As the SNR increases the estimates get better as expected.

3.3. 3D Experimental Lab Results with the Quadrapole Array

A quadrapole array with three receivers and one transmitter coil, as shown in Fig. 2, is built for enhanced 3D
target localization. The quadrapole array is held fixed at x = y = z = 0 and targets like a metal loop and an
anti-personnel land mine are scanned to collect the EMI measurements.

In the first experiment, the target is a loop of 22 AWG wire with a diameter of 31.8 cm oriented so that the
axis of the loop is z directed. The target is positioned at three different cross range values x = (0.02, 0.17, 0.32)m.
For each cross range, the target is moved in down range from y = −50 to y = 50 cm with 0.5 cm increments and
from z = −8 cm to z = −20 cm with 1 cm increments from the level of the array. A dictionary using a z oriented
loop target model is generated. Figure 9 shows the true and estimated depth, cross range and down-range values
for the target. The location of the target is estimated relatively accurately for most of the cases even when the
target is not directly under the center receiver.

Next a more interesting target, a low-metal anti-personnel mine, is tested. In this case, different cross ranges
with x = (0.07, 0.17, 0.27) were measured. The target was moved from z = −7.5 cm to z = −28.5 cm in 1 cm
increments, and from y = −50 to y = 50 cm in 0.5 cm increments. A dictionary of responses including targets
at z = 1, 2, . . . , 30 cm, and cross ranges from x = −18 to x = 50 cm with 2 cm increments is generated. Hence,
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Figure 9. Location estimates for the coil target at (a,b,c) cross range x = 7 cm, (d,e,f) cross range x = 17 cm, (g,h,i)
cross range x = 27 cm.

the exact target depths and cross ranges are not in the dictionary. A loop target model oriented in z direction is
used for dictionary generation as in the loop target case. Note that the target polarization tensor is not known,
and may be different than the loop target model used in dictionary generation. Despite these facts the location
estimates obtained for varying cross ranges shown in Fig. 10 indicate ±2 cm accuracy until the target depth
is 17 cm. For depths below 17 cm, the estimation performance degrades. The cross-range estimation is also
successful for depths less than 20 cm. In most of the cases, the down-track location estimate is very accurate.

3.4. 3D Field Data Results with the Quadrapole Array

The proposed algorithm is tested with the data collected with the quadrapole array shown in Fig. 2 at a field
site over several buried targets. Each target is buried at different grids, and each grid is scanned with the array.
The grid size is approximately 1.5m × 1.5m. The array is held approximately 1” above the ground level. Figure
11 shows the collected measurements from the three receivers taken by scanning a grid containing a low-metal
anti-personnel mine buried approximately 2” depth from the ground level.

The target is close to the center of the grid and the quadrapole array is scanned across the grid. Hence, the
voltage level in receiver 2 (center receiver) is much higher compared to the level in receivers 1 and 3. When
the proposed algorithm is applied to measured data as in Fig. 11, the location of the target is estimated as
(x, y, z) = (0, 0.01,−0.08)m which is very close to the expected location of the target (x, y, z) = (0, 0,−0.08)m.
Here the origin of the coordinate system is on the surface of the soil at the center of the grid; x is the cross-range
coordinate, y is the down-range coordinate and z is the vertical coordinate. The location estimates for five
additional occurrences of the same type of AP mine are shown in Table 1.
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Figure 10. Location estimates for the anti-personnel mine at (a,b,c) cross range x = 7 cm, (d,e,f) cross range x = 17 cm,
(g,h,i) cross range x = 27 cm.
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Table 1. Field Data Location Estimates

Grid No Expected Location (x, y, z)(m) Estimated Location (x, y, z)(m)

1 (0, 0,−0.05) (−0.01, 0.01,−0.06)

2 (0, 0,−0.05) (−0.03,−0.01,−0.07)

3 (0, 0,−0.05) (−0.02, 0.00,−0.05)

4 (0, 0,−0.08) (0.05, 0.03,−0.11)

5 (0, 0,−0.08) (−0.01, 0.02,−0.09)

6 (0, 0,−0.08) (0.00, 0.01,−0.08)

It can be observed that in the field measurements the target locations and depths could be estimated to
within approximately ±3 cm. It is important to note that the approximate depth information is from the top
of the AP mine, not from the metallic part. Also there might be small changes due to the burial process, or
from targets being buried so long that their locations might change slightly. Nevertheless, the proposed method
provides promising depth estimates in the tested field data.

4. CONCLUSIONS AND FUTURE WORK

A location estimation algorithm based on OMP using EMI data is proposed. Our initial tests on simulated,
laboratory and field data indicate that target depth information can be extracted from EMI data with small
errors. However, in a few cases the error can be significantly greater when the the target is a poor match for
the target model used in the dictionary. We are working to generalize the technique so that it is applicable to a
wider range of targets.
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Automated, non-metallic measurement facility for testing and 
development of electromagnetic induction sensors for landmine 

detection 
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ABSTRACT 

For development of electromagnetic induction (EMI) sensors for landmine detection, a testing facility has been 
established for automated measurements of typical targets with both individual sensors and arrays of sensors.  A six-
degree of freedom positioner has been built with five automated axes (three translational stages and two rotational 
stages) and one manual axis for target characterizations with no metal within the measurement volume.  Translational 
stages utilize commercially-available linear positioner hardware.  Rotational stages have been customized using non-
metallic components to position the targets within the measurement volume.  EMI sensors are held fixed in one location 
while the positioner orients the targets and moves them along a prescribed path through the region surrounding the 
sensor.  The automated movement is computer-controlled and data are acquired continuously.  Data are presented from 
three-dimensional scans of targets at various orientations.  Typical targets include shell casings, wire loops, ball bearings, 
and landmines.   

Keywords: Electromagnetic induction, EMI, landmine, detection, sensor, testing 
 

1. INTRODUCTION 
To detect the presence of landmines buried in soil, an electromagnetic induction (EMI) sensor has been developed and 
tested at multiple field locations1-2.  Figure 1(a) shows a single broadband EMI sensor while Figure 1(b) shows a 
broadband array of EMI sensors, both at field locations.  Both sensors were scanned close to the soil surface to detect 
buried targets.  Details of the EMI sensor and its field testing can be found in the literature. 

Sample data from field measurements of four anti-personnel landmines at various depths are shown in the Argand 
diagrams in Figure 2.  The imaginary part of the response is graphed as a function of the real part with frequency as a 
parameter on the Argand diagrams. Each figure shows one type of target with responses plotted for different burial depths.  
The characteristic responses from the buried targets shown in Figure 2 are a function of the metal content and structure 
of the individual targets. Note that the shape of the response is consistent for each target and is insensitive to the burial 
depth.  This shape information can be used to help discriminate between landmines and clutter3-7.   However, little is 
known about how landmines and complex clutter objects behave when they are tilted at odd angles which could cause 
missed detections.  To aid in the development of the EMI sensors and associated detection algorithms, a testing facility 
has been built to characterize the response of typical targets and clutter objects with respect to location and orientation.  
The data from these measurements will be used to study the response of the targets as a function of location and 
orientation.  This type of measurement would be very difficult to perform in the field due to the difficulty of accurately 
placing and rotating the target. It is envisioned that the results of this work can be utilized to reduce false alarm rates and 
increase the probability of detection for EMI sensors through improvements in both the hardware and the processing 
algorithms used to detect and discriminate buried targets. 

In the following sections, the testing facility will be described and experimental measurements will be shown along with 
theoretical results for representative targets including a single wire loop, three mutually orthogonal wire loops, and a 9 
mm shell casing. 
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Fig. 1. Field measurement systems using (a) a single broadband EMI sensor and (b) an array of three broadband EMI 
sensors. 

 

 

 
 

Fig. 2. Sample field data from four types of anti-personnel landmines presented in Argand diagrams.  Each curve in figures 
(a) through (d) represents the response of a single target as a function of interrogation frequency.   The response of 
multiple targets are shown in (a) through (d) with the amplitude differences between curves indicating targets with 
different burial depths. 
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2. EXPERIMENTAL FACILITY FOR CALIBRATION MEASUREMENTS 
 
To measure the characteristic response of EMI sensors of several representative targets, a laboratory positioner was 
developed with three automated translational stages (x, y, and z), two automated rotational stages (yaw and pitch), and 
one manually-adjusted rotational stage (roll, not labeled) as indicated in Figure 3.  A single EMI sensor is shown in 
Figure 3(b) with a single wire loop as the target while an array of three EMI sensors is shown in Figure 3(c) with a target 
that consists of three mutually orthogonal loops of different gauge wire.  This system has been used to measure the 
response of targets in a three-dimensional region as a function of angular orientation.  Other typical targets include shell 
casings, ball bearings, coplanar wire coils, and landmines. 

The translational stages were built using commercially-available hardware including stepper motors, gear reducers, belts, 
and aluminum structural beams.  The positioner can translate each target throughout a 2 m by 1 m by 0.5 m volume.  The 
first automated rotational stage utilizes a Velmex rotary positioner (Model # B4818TS) with a stepper motor to control 
the yaw angle throughout a 360° range of motion.  The second automated rotational stage was custom-built using 
fiberglass structural beams, polycarbonate connectors, fiberglass shafts, acetal/nylon/glass nonmetallic bearings, nylon 
miter gears, fiberglass-reinforced nylon sprockets, Delrin chains, and nylon bolts.  A stepper motor controls the pitch 
angle throughout a 360° range of motion.  The second rotational stage holds each target 70 cm from the nearest metal on 
the moving support beam.  This second rotational stage is reconfigurable as the fiberglass structural beams can be 
replaced by different length beams to adjust to different size targets; this would also necessitate appropriate adjustments 
to the chains and fiberglass shafts. 

The EMI sensor or array of EMI sensors is positioned in the middle of the measurement region, sufficiently distant from 
the floor (and its structural steel) and the aluminum beams of the positioner frame to minimize the measured response 
from the surrounding metal structures.  Additionally, the response from the surrounding metal structures is subtracted 
from the measurements of the individual targets as a part of the EMI sensor’s processing algorithms.  While the EMI 
sensor is held fixed, the positioner orients the target in yaw and pitch and then translates it along a prescribed path 
computed by the data acquisition and motion control system.  The path is continuous in the x direction with a discrete set 
of values for y and z.  The path is repeated for each set of yaw and pitch angles. 

The EMI sensor and the array of EMI sensors includes a surrounding coil that transmits an excitation signal.  A multi-
sine signal, composed of 21 distinct frequencies logarithmically spaced from 300 Hz to 90 kHz, is transmitted cyclically.  
The multi-sine signal has been optimized in regards to phase angle and amplitude as well as to minimize interference 
with power line harmonics.  This cyclic transmission allows for continuous data acquisition in the time domain at 204 
kSamples/second from each sensor with processing while the target is in motion.  The time-domain data are transformed 
into the frequency domain using a fast Fourier transform.  This operation is performed in real time and only the 21 
complex-valued samples in the frequency domain for each measurement point are saved. This provides a substantial 
benefit in that the saved data can be reduced from 20,400 single-valued samples in the time domain to 21 complex-
valued samples. 

Continuously sampled data are acquired, processed, and saved at 0.1 second intervals while the target is in motion along 
the prescribed path.  With the target moving at 4 cm/second in the x-direction, data are acquired every 0.4 cm along the 
x-axis.  The data are then interpolated to 0.5 cm intervals for an evenly-spaced grid in the post-processing.  As data are 
acquired at distinct y and z values, interpolation is not required in those dimensions. 

A typical measurement for the EMI sensor array scans a target continuously from -51 cm to 51 cm in the x-direction and 
discretely at y-values from -30 cm to 30 cm in 10 cm increments and z-values from 0 cm to 22 cm in 1 cm increments 
for three yaw angles (0, 45, and 90 degrees) and five pitch angles (0, 22.5, 45, 67.5, and 90 degrees) over a 19 hour time 
period.  Processing of the acquired data results in 30,581,145 complex data points.  This is so much data that it is 
difficult to inspect it.   
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Fig. 3. Experimental measurement facility for EMI target characterization: (a) Automated translational (x, y, and z) and 
rotational (yaw about z and pitch about y) axes labeled, manual rotational (roll about x) axis not labeled; (b) Single wire 
loop target shown above single EMI sensor; and (c) Three mutually-orthogonal wire loops target (in inset photograph) 
shown above EMI sensor array (three EMI sensors). 

Proc. of SPIE Vol. 7303  73030X-4

Downloaded from SPIE Digital Library on 01 Dec 2011 to 130.207.50.192. Terms of Use:  http://spiedl.org/terms



 

3. EXPERIMENTAL AND NUMERICAL MEASUREMENTS 
 
Measurements have been conducted of several typical EMI targets including landmines, shell casings, ball bearings, 
single wire coils, multiple coplanar wire coils, and three mutually orthogonal wire coils.  Some targets are included due 
to practical interests in detection of the targets in the field while some are included for research and development of the 
EMI sensor hardware.  All of the targets are of interest for detection and processing algorithm development efforts.  Data 
from three targets (a single wire loop, a composite target with three mutually orthogonal wire loops, and a 9 mm shell 
casing) will be presented in this section; the wire loop targets are useful for demonstrating the EMI system performance 
capabilities while the shell casing has inherent practical interest and a comparatively simple response. 

The measured data are filtered in the down-track direction by convolving the measured data with the zero-mean template 
shown in Figure 4. The filter is used to make the data from the measurement system directly comparable to that of the 
field systems in which the filter has three beneficial effects. First, it mostly removes the ground response by differencing 
closely located portions of the ground. Second, it mostly removes the drift in the system by differencing measurements 
made only a short time apart. Third, it averages the data over several locations which will improve the signal to noise 
ratio.   
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Fig. 4. Filter template. 

 
The first target is a simple loop of 22 AWG copper wire formed into a loop with a circumference of 10 cm which has a 
theoretical relaxation frequency of 10.0 kHz.  The loop is oriented so that its axis is z directed when the yaw and pitch 
angles are zero as shown on Figure 3b.  The magnetic polarizability tensor of the loop is: 
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where ζ = 2πfr is the relaxation frequency, A is the area of the loop and, L is the self inductance of the loop.  The 
measured response for the single loop is presented in Figures 5, 6, and 7. In Figure 5a, the magnitude of imaginary part 
of the response is presented in pseudo-color graphs as a function of x and z at y=0 and f=5,190 Hz for five pitch angles 
and three yaw angles.   For pitch = 0°, the graphs are as expected; the strongest response is at x = 0, the response is 
symmetric about x = 0, and the response gets weaker as z increases.  For pitch = 22.5°, 45°, and 67.5°, the response is no 
longer symmetric about x = 0.  For pitch = 90°, the response is again symmetric about x = 0, but the maximum response 
is not at x = 0, and the response is almost zero when yaw = 90°.  In Figure 5b, the response computed from a theoretical 
model is shown which models the loop as in infinitesimal magnetic dipole with the magnetic polarizability tensor on 
equation 1.  The theoretical results are very similar to the measured results. 
 
In Figure 6, Argand diagrams of the response are presented from the experimental measurements and the theoretical 
model of the single-loop target at x=0, y=0, z=4.5cm for three yaw and five pitch angles.  The shape of the response is 
the same for all the rotation angles while the amplitude of the response changes with rotation angle. This is predicted 
theoretically since the loop only has a single relaxation.   
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In Figure 7, the discrete spectrum of relaxation frequencies8 of the response from experimental measurements and 
theoretical model of the single-loop target at x=0, y=0, z=4.5cm for three yaw and five pitch angles.  Here the data is fit 
to a relaxation (exponential) model, and the amplitude of each of the relaxation frequencies is plotted as a function of 
relaxation frequency.  This analysis correctly identifies the 10 kHz relaxation frequency at all of the rotation angles 
except at pitch = yaw = 90° where the response is zero.  The analysis also shows additional relaxations of very-low 
amplitude from the experimental data which may be due to secondary relaxations or noise. 
 
The second target consists of three loops of copper wire that are at right angles to each other and is seen on Figure 3c. 
The magnetic polarizability tensor of the loops is: 
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where ζk = 2πfrk are the relaxation frequencies, Ak are the areas of the loops and, Lk are the self inductances of the loops 
with k = x, y, z.  The parameters for the loops are presented in Table I. 
 

Table I. Parameters for the three-loop target. 
Orientation Diameter (cm) Wire Gauge (AWG) Relaxation Freq. (kHz) 

x 5 36 10.1 
y 4 30 50.2 
z 3 22 172 

 
The measured and theoretical responses for the three-loop target are presented in Figures 8, 9, and 10. In Figure 8, the 
magnitude of imaginary part of the response is presented in pseudo-color graphs as a function of x and z at y=0 and 
f=5,190 Hz for five pitch angles and three yaw angles.   For pitch = 0° and 90°, the response should be symmetric about 
x = 0; however, the experimental results are slightly asymmetric for pitch = 90° which is probability due to the target 
being slightly out of alignment.  Otherwise, the experimental and theoretical results are very similar.  In Figure 9, 
Argand diagrams of the response are presented from the experimental measurements and the theoretical model. The 
shape and amplitude of the response now changes as a function of the rotation angles. This is predicted theoretically 
since the loop has a different relaxation frequency along each axis.  This will make it more challenging to use the shape 
information for identification of such a complex target.  In Figure 10, the discrete spectrum of relaxation frequencies of 
the response from experimental measurements and theoretical model of the three-loop target.  This analysis correctly 
identifies the three relaxation frequencies of the target.  Note the relative amplitude of the relaxations change as a 
function of the rotation angles.  This representation of the data may be helpful for the discrimination of complex targets 
with unknown orientation. 
 
The third target is a 9 mm shell casing, and its measurements are shown in Figures 11, 12, and 13. It is difficult to see 
that the response of this target varies with rotation angle from the graphs in Figures 11 and 12, however, the difference is 
apparent in the graphs in Figure 13.  The discrete spectrum of relaxation frequencies for this target consist of three 
relaxations that have amplitudes that vary with the rotation angles as seen in Figure 13.  The magnetic polarizability 
tensor for this target is unknown but these measurements contain sufficient data to construct it.  We plan on deriving the 
magnetic polarizability tensor in future work.   
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Fig. 5. Pseudo-color graphs of the magnitude of imaginary part of the response for the single-loop target from (a) experimental 
measurements and (b) theoretical modeling as a function of x and z at y=0 and f=5,190 Hz.  The graphs are on a 60 dB scale using the 
Matlab jet color map.   Pitch angles range from 0° to 90° in 22.5° increments from top to bottom.  Yaw angles range from 0° to 90° in 
45° increments from left to right in the figure.(color image in electronic version of manuscript) 
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Fig. 6.  Argand diagrams of the response from experimental measurements and theoretical modeling of the single-loop target 

at x=0, y=0, z=4.5cm for three yaw and five pitch angles.  Pitch angles range from 0° to 90° in 22.5° increments from 
top to bottom.  Yaw angles range from 0° to 90° in 45° increments from left to right in the figure. 

    
Fig. 7. Graphs of the discrete spectrum of relaxation frequencies of the response from experimental measurements and 

theoretical modeling of the single-loop target at x=0, y=0, z=4.5cm for three yaw and five pitch angles.  Pitch angles 
range from 0° to 90° in 22.5° increments from top to bottom.  Yaw angles range from 0° to 90° in 45° increments from 
left to right in the figure. 
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Fig. 8. Pseudo-color graphs of the magnitude of imaginary part of the response from (a) experimental measurements and (b) 
theoretical modeling for the three-loop target as a function of x and z at y=0 and f=5,190 Hz.  The graphs are on a 60 dB scale using 
the Matlab jet color map.  Pitch angles range from 0° to 90° in 22.5° increments from top to bottom.  Yaw angles range from 0° to 90° 
in 45° increments from left to right in the figure. (color image in electronic version of manuscript) 
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Fig. 9.  Argand diagrams of the response from experimental measurements and theoretical modeling of the three-loop target 

at x=0, y=0, z=4cm for three yaw and five pitch angles.  Pitch angles range from 0° to 90° in 22.5° increments from top 
to bottom.  Yaw angles range from 0° to 90° in 45° increments from left to right in the figure. 

   
Fig. 10. Graphs of the discrete spectrum of relaxation frequencies of the response from experimental measurements and 

theoretical modeling of the three-loop target at x=0, y=0, z=4cm for three yaw and five pitch angles.  Pitch angles 
range from 0° to 90° in 22.5° increments from top to bottom.  Yaw angles range from 0° to 90° in 45° increments from 
left to right in the figure. 
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Fig. 11. Pseudo-color graphs of the magnitude of imaginary part of the response from experimental measurements of a 9 mm shell 
casing as a function of x and z at y=0 and f=5,190 Hz.  The graphs are on a 60 dB scale using the Matlab jet color map.  Pitch angles 
range from 0° to 90° in 22.5° increments from top to bottom.  Yaw angles range from 0° to 90° in 45° increments from left to right in 
the figure. (color image in electronic version of manuscript) 

 
Fig. 12.  Argand diagrams of the response from experimental measurements of a 9 mm shell casing at x=0, y=0, z=3.2cm 

for three yaw and five pitch angles.  Pitch angles range from 0° to 90° in 22.5° increments from top to bottom.  Yaw 
angles range from 0° to 90° in 45° increments from left to right in the figure. 
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Fig. 13. Graphs of the discrete spectrum of relaxation frequencies of the response of a 9 mm shell casing at x=0, y=0, 
z=3.2cm for three yaw and five pitch angles.  Pitch angles range from 0° to 90° in 22.5° increments from top to bottom.  
Yaw angles range from 0° to 90° in 45° increments from left to right in the figure. 

4. CONCLUSIONS 
A new experimental facility has been established to measure the response of typical targets for EMI sensors as a function 
of location and orientation.  This has been accomplished with a six-degree of freedom positioning system with five 
automated axes (the three translational axes and two rotational axes) and one manual axis.  The EMI sensors are held 
fixed while targets are oriented using the rotational axes and then moved along a prescribed path through the 
measurement volume.  Commercially available hardware has been used for the translational stages and one rotational 
stage while a custom-built rotational stage has been assembled to eliminate metal from the measurement region. 

Measurements with this system provide a complete characterization of the targets for comparison to field measurements 
as well as with numerical modeling of EMI sensors for further hardware development.  This type of data may also be 
used in the development of detection algorithms for EMI sensors.  Future efforts with the experimental facility will 
include measurements of more targets and investigations of methods for summarizing the massive amounts of collected 
data into simple physical models.  Further development of the processing algorithms will be done to help characterize 
more complicated targets and refine detection and discrimination methods for EMI sensors. 
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ABSTRACT

It is difficult to robustly estimate the parameters of an additive

exponential model from a small number of frequency-domain

measurements, especially when the model order is unknown

and the parameters must be constrained to be real. Recent

work in sparse sampling and sparse reconstruction casts this

problem as a linear dictionary selection problem by densely

sampling the parameter space. We present a modified �p-

regularized least squares algorithm, for 0 ≤ p ≤ 1, and show

that it is effective when the frequency sampling is sparse over

a couple of decades and the parameters must be estimated

over more than four decades. An empirical method for choos-

ing the regularization parameter is also studied. Using tests

on synthetic data and laboratory measurements for an EMI

application, the proposed method is shown to provide robust

estimates of the model parameters up to eighth order.

Index Terms— Parameter estimation, �1 minimization,

sum of exponentials, basis pursuit.

1. INTRODUCTION

Additive exponential models are commonly used in science

and engineering to model a wide range of physical phenom-

ena such as the eddy currents for electromagnetic induction

(EMI), dielectric material properties in polymer science, and

many others in the fields of chemistry, biology, and speech, to

name a few. It can be difficult to extract the model parameters

from measurements when the number of parameters is more

than a few, when the model order is unknown, or when the

number of measurements is very small. Furthermore, when

the measurements are made in the frequency domain and the

exponential parameters must be real, very few techniques

exist to solve the resulting constrained estimation problem.

In [1] we developed a constrained linear least-squares method

to estimate these models when the parameters are nonnega-

tive, and demonstrated the utility and robustness of this algo-

This work is supported in part by the US Army REDCOM CERDEC

Night Vision and Electronic Sensors Directorate, Science and Technology

Division, Countermine Branch and in part by the U. S. Army Research Office

under Contract Number W911NF-05-1-0257.

rithm for wideband EMI systems. The method uses 21 mea-

surements, equi-spaced in the logarithmic frequency domain,

taken over a range of 2.5 decades, and estimates parameter

values over 4.17 decades. We have tested this method on syn-

thetic data and lab data, and have shown that it can reliably

extract models. Recently, Austin et al. [2] studied parameter

estimation for additive models through sparse sampling and

reconstruction. They formulated a linear problem by enumer-

ating an overcomplete dictionary of possible models. Then

they proposed a sparse nonuniform sampling strategy based

on the Fisher information, and demonstrated their method on

a time-domain sum-of-exponentials model.

In this paper, we extend the frequency-domain tech-

nique [1] to remove the nonnegative constraint. We linearize

the estimation problem with a dictionary as in [1, 2], and

solve it with �p-regularized least squares for 0 ≤ p ≤ 1. We

exploit the fact that after linearizing the problem the solution

vector is most likely sparse, and we show that a log-frequency

sampling scheme performs nearly the same as one based on

Fisher information. The proposed method requires no prior

knowledge of the model order K and always returns real

parameters. We demonstrate its robustness with results on

synthetic and laboratory data, even when using high model

orders and frequencies measured over several decades.

2. ESTIMATION METHOD

The EMI frequency response H(ω) of a metallic target, which

is proportional to a projection of the magnetic polarizability

tensor of the target,can be expressed as [3]:

H(ω) = c0 +
K∑

k=1

ck

1 + jω/ζk
(1)

where c0 is the shift, K the model order, ck the real spectral

amplitudes, and ζk the relaxation frequencies. The parameter

set S = {(ζk, ck) : k = 1 . . . K} is called the Discrete Spec-

trum of Relaxation Frequencies (DSRF); each pair (ζk, ck) is

one relaxation. The term DSRF and spectrum will be used

interchangeably.

4010978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



It is advantageous to model the EMI signal with (1) be-

cause the relaxation frequencies are invariant to target orien-

tation, which is valuable in target detection. However, it is

difficult in practice to obtain the model parameters in (1) from

a small number of measurements. For most existing estima-

tion methods, a good guess of the model order K is required

for the fitting process to converge. Prior knowledge of K,

however, is usually unavailable. The highly correlated sum-

mands in (1) and the nonlinear relation between H(ω) and ζk

also make estimation difficult. Most existing methods often

give sub-optimal solutions that are far from the truth, or return

complex parameters that do not have physical meaning [4].

When the target response is measured at N distinct fre-

quencies, (1) can be written in matrix form:

⎡
⎢⎢⎢⎣

H(ω1)
H(ω2)

...

H(ωN )

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 1
1+jω1/ζ1

1
1+jω1/ζ2

. . . 1
1+jω1/ζK

1 1
1+jω2/ζ1

1
1+jω2/ζ2

. . . 1
1+jω2/ζK

...
...

...
. . .

...

1 1
1+jωN /ζ1

1
1+jωN /ζ2

. . . 1
1+jωN /ζK

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Z

⎡
⎢⎢⎢⎢⎢⎣

c0

c1

c2

...

cK

⎤
⎥⎥⎥⎥⎥⎦

h = Zc (2)

where ωmin = ω1 < ω2 < · · · < ωN = ωmax, h is the

observation vector, c the spectral amplitude vector augmented

by the shift c0, and Z a matrix containing information about

the relaxation frequencies ζ.

To estimate the DSRF (i.e., ζk and ck) from a given ob-

servation h, the usual approach is to minimize the norm of

the error, but this leads to a nonlinear optimization problem.

Instead, we follow the strategy of basis pursuit to linearize

the problem with an overcomplete dictionary. The overcom-

plete dictionary is a matrix Z̃ that has the same form as Z in

(2), but with many more columns. To generate the columns,

we enumerate a large set of M possible relaxation frequen-

cies uniformly distributed in the log-ζ space (M � K), and

create one column for each enumerated ζ [1]. Compared to

the non-uniform sampling [2] based on the Fisher information

where the step size is given by

Δ(ζ̃m) = α

[
N∑

n=1

( ωn

ω2
n + ζ̃2

m

)2
]− 1

2

the uniform log-ζ sparse sampling gives similar sample points

(Fig. 1).

Since the dictionary matrix Z̃ has (M+1) columns, we

redefine the unknown as an (M+1)-element weighted selector
vector c̃ and rewrite the problem as:

h = Z̃c̃ + error (3)

The vector c̃ contains the shift estimator c̃0 followed by the

spectral amplitude estimators c̃m. We expect the solution for

c̃ to have many zero elements because M � K, i.e., c̃ will be
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Fig. 1. Samples generated from uniform log-ζ sampling and non-
uniform sampling based on the Fisher information.

sparse. We utilize the �p-regularized least squares technique,

for 0 ≤ p ≤ 1, because it promotes sparse solutions.

arg min
c̃
||Z̃ ′

c̃− h′||22 + λ||c̃||pp , 0 ≤ p ≤ 1 (4)

where Z̃
′
=

[
Re(Z̃)
Im(Z̃)

]
and h′ =

[
Re(h)
Im(h)

]

where λ is the regularization parameter. Separating the real

and imaginary parts in Z̃ makes the whole system real. Ide-

ally, in the best selected c̃, only those c̃m with corresponding

ζ̃m that are near a true ζk will be nonzero, and they will take

on the correct spectral amplitudes ck. It follows that a DSRF

can then be deduced from the nonzero estimated c̃m and their

corresponding ζ̃m.

The �p-regularized least squares for p < 1 can be approx-

imated by the iteratively reweighted �1 algorithm proposed by

Candès et al. [5]. The weights are updated as suggested in [6].

We also adopt the ε-regularization technique used in the same

paper. In summary, (4) is approximated by (see also [7]):

Algorithm 1: Approximated �p-regularized least square

Input: Z̃
′
, h′, p, λ, c̃0

c̃n ← c̃01

for k ← 0 to −8 step −1 do2

ε← 10k3

repeat4

c̃n−1 ← c̃n5

wn
i ← (|c̃n−1

i |+ ε)p−16

c̃n ← arg min ||Z̃ ′
c̃− h′||22 + λ

∑M+1
i=1 wn

i |c̃i|7

until ||c̃n − c̃n−1||2 <
√

ε/1008

return c̃n9

The �1 minimization problem is solved by l1 ls, a MATLAB

optimizer proposed by Kim et al. [8]. We have also found

that normalizing the input data h, as well as the columns of

Z̃
′

to have unit �2 norm increases the accuracy of estimation.

Setting entries of c̃0 to all ones also seems to be effective.

The nonzero entries of c̃ selected by (4) are the relaxations

need in the estimated DSRF, Ŝ = {(ζ̂l, ĉl) : l = 1 . . . L}.
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Fig. 2. Estimation of a synthetic six-relaxation DSRF. p = 0.5.

3. ESTIMATION RESULTS

The proposed estimation method is tested against synthetic

and laboratory data to show its functionality, accuracy, and

stability. The hardware system used is a wideband EMI sen-

sor operating at 21 frequencies approximately logarithmically

distributed over the range 300 Hz–90 kHz (2.5 decades) [9].

The synthetic data is generated in accordance with the hard-

ware specification. The range of ζ for estimation is chosen

such that log(ζ̃min) and log(ζ̃max) are 2.45 and 6.62, respec-

tively, i.e., 4.17 decades. All estimations are performed with

M = 100, and all presented spectra are normalized such that∑
i=1 |ci| = 1. Spectral amplitudes less than 10−5 are not

displayed. Unless specified, p = 0.5 is chosen as a represen-

tative case. The choice of λ is discussed in Section 4.

Notation: ζ and c are the true/theoretical relaxation frequen-

cies and spectral amplitudes; ζ̂ and ĉ are the estimates.

3.1. Dissimilarity Measure Between Two DSRFs

In order to evaluate the goodness of the estimate, we need

to define a measure of dissimilarity that is appropriate for

sparse spectra with multiple peaks. We use the Earth Mover’s

Distance (EMD) [10] which quantifies the “amount of work”

to morph one spectrum into the other. Strictly speaking the

EMD is only defined for positive spectra, but we can account

for negative spectral amplitudes by defining the distance func-

tion between two relaxations (ζi, ci) and (ζ̂j , ĉj) to be:

dij =
{ | log ζi − log ζ̂j | , ciĉj ≥ 0

1 + | log ζi − log ζ̂j | , ciĉj < 0

which penalizes relaxations with different signs. Spectra are

made nonnegative and normalized prior to the EMD compu-

tation. Notice that the EMD has units of decades.

3.2. Synthetic Six-relaxation DSRF

We test our method on a six-relaxation DSRF synthesized at

65 dB SNR with AWGN (Fig. 2). This is a case that can-

not be handled by traditional nonlinear parameter optimiza-

tion which tends to return complex-valued estimates [4]. Us-

ing p = 0.5, all six relaxation frequencies are recovered by
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Fig. 3. Monte Carlo simulation on goodness of estimation vs. SNR
performed on a four-relaxation DSRF. Sample size is 100 per SNR.

solving (4). Though the estimation is not perfect, it is never-

theless satisfactory. The estimated model parameters are real,

and the deviation from truth is small. The EMD between the

estimated and the true DSRF is 0.09 decades. The estimate

using p = 1 is also shown in Fig. 2. It is less sparse, but its

EMD is still small, 0.10 decades. Satisfactory estimates are

also observed for model orders up to eight.

3.3. Signal to Noise Ratio

To see how the proposed method performs in noise, a Monte

Carlo simulation versus SNR is run for several p’s. The true

spectrum is a target with a four-relaxation DSRF including

negative relaxations. The simulation result, shown in Fig. 3,

shows the robustness of the estimation method at different

signal-to-noise ratios. For all p’s, the EMD between the es-

timate and the truth increases as the SNR decreases. This

suggests that the proposed method is functional in a range of

SNR where the EMD is below some threshold. This thresh-

old, however, depends on the application of the estimated

spectrum. For example, if the DSRF produces features for

classification, a more robust classifier may tolerate worse es-

timations and, therefore, allow lower SNR. It seems p < 1
offers performance similar to that of p = 1, but p < 1 does

give sparser estimates as demonstrated above. The sparsity,

however, is not reflected in the EMD measure.

3.4. Two Coplanar Coaxial Circular Loops

For laboratory data, a target with two coplanar coaxial circu-

lar loops of copper wire was constructed. The circumferences

of the two loops were chosen to be 200 mm and 150 mm. The

larger loop has a wire radius of 0.06 mm, and the smaller one

of 0.32 mm. The EMI response of this target was measured

in the laboratory and is shown in Fig. 4(a), and the estimated

and theoretical DSRF are displayed in Fig. 4(b).

The estimated DSRF deviates from the theory with an

EMD of 0.04 decades. We believe the extra estimated re-

laxation and the deviation is mostly due to the thin-wire ap-

proximation used in the theory [1]. The measured frequency

response itself deviates from the theory slightly, but the devia-
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Fig. 4. (a) Laboratory measured frequency response of two coplanar
coaxial circular loops. Responses are normalized such that ‖h‖2 =
1. (b) Theoretical and estimated DSRF. log ζk and ck are (4.76 6.07)
and (0.50 0.50), respectively. log ζ̂l and ĉl are (4.77 4.89 6.03) and
(0.45 0.04 0.51), respectively.

tion is small. We conclude that this estimated DSRF correctly

represents the physical DSRF of the target.

4. CHOOSING λ

We propose an empirical method to find the best λ in (4) as

a function of SNR. First, we build a collection of synthetic

spectra with different model orders and a wide variety of dis-

tributions of relaxations. For each spectrum at a fixed SNR,

the spectrum is estimated with different λ’s, and then the λ
that gives the smallest error (EMD) is recorded. This is done

for a range of SNR and is repeated 100 times to obtain an

average. The result shown in Fig. 5 is for the case p = 0.5.

The EMD plays an important role in finding the best λ when

there are many peaks in the spectrum because it combines

all the spectrum deviations into one number. Some authors

only count the number of perfect reconstructions when eval-

uating the goodness of fit, but imperfect estimates are often

acceptable and some level of error always occurs, especially

for ill-conditioned dictionaries.

Surprisingly, for each spectrum, the best λ has a simple

relationship with the SNR: log λ is linear vs. SNR. We can,

therefore, choose the best λ based on the SNR through a sim-

ple linear equation such as (5). Although targets of different

model orders have different lines of best λ, we have observed

that the minimum EMD is not highly sensitive to the exact

choice of λ; changing by one or two decades gives an error

30 40 50 60 70 80

10
−6

10
−4

SNR(dB)

λ

2
3

4

6

7

logλ=−0.06*SNR−2

Fig. 5. Best λ vs. SNR for spectra of various model order. The line
with markers is chosen to represent the best λ for all model orders.

very close to the minimum. As a result, there is some free-

dom in choosing the best λ in a practical application. For our

problem setup, the λ is chosen by

log λ = −0.06 · SNR− 2 (5)

The same empirical method can be repeated for other p’s, and

the result is also a linear relationship between log λ and SNR.

With field data we use (5) along with an estimate of the SNR

to determine λ for use in Algorithm 1.
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ABSTRACT

Broadband electromagnetic induction (EMI) sensors have 
been shown to be able to reduce false alarm rates and 
increase the probability of detecting landmines.  To aid in 
the development of these sensors and associated detection 
algorithms, a testing facility and inversion technique have 
been developed to characterize the response of typical 
targets and clutter objects as a function of orientation and
frequency.  

Index Terms— Electromagnetic induction, EMI, landmine
detection, sensor

1. INTRODUCTION

Simple electromagnetic induction (EMI) sensors are 
capable of detecting most landmines; however, they will also 
detect every buried metal object such as bottle tops, nails, 
shrapnel, bullets, etc. This results in an unacceptable false 
alarm rate. This is even more problematic for the detection 
of low-metal anti-personnel landmines as they are extremely 
difficult to distinguish from clutter using a simple EMI
sensor. However, advanced EMI sensors that use a broad 
range of frequencies or a broad range of measurement times 
along with advanced signal processing have been shown to 
be capable of discriminating between buried landmines and 
many types of buried metal clutter [1-6].  The broadband 
responses of many targets are relatively invariant to burial 
depth; however, the responses of some objects vary when 
they are tilted at arbitrary angles, which could cause missed 
detections.

To aid in the development of EMI sensors and associated 
detection algorithms, a testing facility and inversion 
technique have been developed to characterize the response 
of typical targets and clutter objects with respect to location, 
orientation, and frequency.  The data from these 
measurements are used to develop models that are valid for 
any orientation of the object.  Similar measurements in the 
field would be very difficult to perform due to the difficulty 
of accurately placing and rotating the target. It is difficult to 
analytically or numerically predict the response of many of 
these objects with accuracy due to uncertainties in the 
material parameters and geometry of the metal components 
in the objects.  The objects are modeled as simple sets of 

magnetic dipoles with discrete relaxation frequencies.  It is 
envisioned that the models derived in this work will be 
utilized to reduce false alarm rates and increase the 
probability of detection for EMI sensors through 
improvements in both the hardware and the processing 
algorithms used to detect and discriminate buried targets. 

2. MEASUREMENT SYSTEM

A laboratory positioner was developed with three 
automated translational stages (x, y, and z), two automated 
rotational stages (yaw and pitch), and one manually-adjusted 
rotational stage (roll, not labeled) as indicated in Fig. 1 [7].
An EMI sensor array [8] is shown in Fig. 1b with the three-
loop target.  This system is used to measure the response of 
targets in a three-dimensional region as a function of angular 
orientation.  

3. MODEL

A simple dipole model is developed to predict the target 
response of an EMI system as a function of its position and 
orientation.  

3.1. Magnetic Polarizability of a Target

When a target is placed in a time-varying magnetic field, 
magnetic moments are induced due to two effects: the 
magnetic permeability of the target and the electrical 
conductivity that allows the induction of current.  If the 
target is electrically small, the magnetic moments can be 
expressed in terms of the equivalent magnetic dipole 
moment, m. The dipole moment can be calculated from the 
magnetic polarizability tensor, M, when the exciting field 
HT is relatively constant over the extent of the object: 

TMHm . A target will often have multiple relaxations and 
will have a corresponding tensor for each relaxation that 
contains the orientation/symmetry information for the 
relaxation.  The magnetization for such a target can be 
written as the sum [2]:
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where Tk is a real constant, k is the relaxation frequency, 
and Tk is a real, symmetric, second rank tensor. The first 
term is due to the bulk magnetic permeability of the target, 
which is assumed to be frequency independent, and the 
second term is due to the currents induced in the target. The 
tensor Tk results from the path of the current for the kth

relaxation.

a)

b)

Fig. 1. Experimental measurement facility for EMI target 
characterization: a) Single EMI sensor head with automated 
translational (x, y, and z) and rotational (yaw about z and pitch 
about y) axes labeled, manual rotational axis (roll about x) 
unlabeled; b) EMI sensor head array with three-loop target.

3.2. EMI System

Consider the example EMI system that consists of transmit 
and receive coils which interact with a target.  Here HT is the 
field at the target generated by the transmit coil when the 
coil is driven with the current IT, and m is the dipole moment 
induced on the target. It can be shown by using reciprocity 
that the received voltage due to the target is [9, 10]:

T
T
R

R

T
R

R

R I
j

I
j

V MHHmH (2)

where HR is the magnetic field generated when the receiving 
loop driven with the current IR.  Note that HT, HR, and m can 
be, and are likely to be, in different directions. The received 

voltage is compared to a reference voltage to obtain the 
response R of the system:

T
T
R

RTXX

R

IILV
V MHHR (3)

where TXX ILjV is the reference voltage from a 
reference transformer with mutual inductance LX which is 
also driven by transmit current IT.  The response of the 
system when the target is rotated by the Euler angles , ,
and can be written as

T
TT

R
RTX IIL

HMRRH ),,(),,(R (4)

where R is a rotation matrix[11]. The angle is the yaw 
angle, is the pitch angle, and is the roll angle; the yaw 
and pitch angles are indicated in figure 1. The magnetic 
fields HT(x, y, z) and HR(x, y, z) are calculated as a function 
of position by direct application of the Biot-Savart law from
the geometry of the wires in the coils.

4. ESTIMATION OF TARGET PARAMETERS

In a typical measurement, the response R is measured as a 
function of position and orientation, and in this section, a 
method for inverting the measurement to obtain the model 
parameters is presented. Direct fitting of the parameters in 
equations 1 and 4 is difficult because of the non-linear 
relationship between the relaxation frequencies k and the 
orientation of the tensors with the response.  The non-linear 
relation for k is dealt with using the procedure described in 
[12].  The non-linear relation with the orientation of the 
tensors is dealt with by using the symmetry of the target.  
The tensor Tk is expanded in a set of basis tensors Tk which 
span the allowable range of Tk. This expansion allows for 
solution using a linear least-squares approximation 
procedure. For this paper, two types of expansions will be 
considered.  First, all targets can be oriented so that Tk is 
diagonal [11].  It can also be shown that Tk is diagonal for 
certain targets with symmetries about the coordinate 
axes[13].  The three loop target shown in figure 1b is an 
example of a target with this symmetry.  For these targets, Tk

is expanded as
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Second, some targets have additional symmetry about the z-
axis which can be used to further simply the expansion: 
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A penny, a nail, and a rifle cartridge are examples of objects
with this type of symmetry. In all of these expansions, the 
coefficients are positive since they are aligned with the 
physical dipoles.  

A zero-mean down-track filter is applied to the 
measured response to lessen the effects of positional errors 
in the x direction, to increase the signal to noise ratio, to 
help mitigate the response to the positioning system, and to 
mostly remove the direct coupling between the transmit and 
receive coils[8]. The filtered response is obtained at the 
discrete observations Op :
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where p is the frequency at the pth observation.  Ppn

contains the filtering, the projections of the tensors on the 
fields and the rotation matrices:
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where xp, yp, zp, p, p, and p are the locations/orientations 
at the pth observation and where F is the down-track filter 
described in [8]. The values of k are determined in this 
paper by computing the discrete spectrum of relaxation 
frequencies (DSRF) as described in [12] on a response that 
is averaged over all the discrete observations Op. The 
parameters Mkn are obtained by writing (7) as a matrix 
equation as shown in [14]. Multiple locations and/or 
orientations are included to get enough measurements to 
make it possible to solve for the parameters Mkn. The non-
zero values of Mkn will be positive, and many of the 
parameters Mkn can be zero since not every relaxation will 
have all the tensor components..

5. RESULTS

Two targets were measured that are made with loops of wire 
so that their theoretical parameters are easily estimated to 
demonstrate the accuracy of the modeling technique.  The 
first loop target is made with 22 AWG copper wire formed 
into a circular loop with a circumference of 10 cm, which 
has a theoretical relaxation frequency of 10.0 kHz. The 
theoretical and estimated model parameters are graphed as a 
function of the relaxation frequency, fr = /2 , in Fig. 2a for 
the single-loop target. The agreement between the theory 

and experiment is very good. Since the loop is z-directed, 
the theory predicts a single z component for the dipole 
expansion at 10.0 kHz; however, the expansion in equation 
(8) is used for this inversion which allows for three 
components.  Ideally, the inversion would return exactly 
zero amplitudes for the additional components, but because 
of measurement errors, the additional components will not 
always have an amplitude of exactly zero. The additional 
components near 10.0 kHz are seen to be very small in 
figure 2a. These components could be due to a small 
misalignment of the target in the measurement system. Note 
that in the measured results, there is a weak relaxation at 250 
kHz that is not predicted theoretically. We believe that this 
is due to the finite thickness of the wire that is not taken into 
account in the theoretical model.  

The second loop target is a three-loop target that 
consists of three orthogonal loops of copper wire as shown 
in Fig. 1b. The theoretical and estimated model parameters 
are graphed as a function of the relaxation frequency in Fig. 
2b. Each relaxation frequency for this target has a different 
component due to the arrangement of the loops. The 
agreement between the theory and experiment is very good,
even for this more complex target. 

Results are shown in Figures 2c through 2e for an anti-
personnel low-metal landmine, a nail, and a 9 mm cartridge.
The parameters M0n are due to the frequency independent 
magnetic permeability of the targets and are labeled as DC 
on the figures.  These parameters are essentially zero for 
three of the targets since they are non-magnetic, but are non-
zero for the landmine and the steel nail since they are 
magnetic.  The magnetic targets have relaxation terms, Mkn,
in addition to the magnetic terms, M0n. The experimental 
results for this broad range of targets demonstrate the 
capability of the model to represent the targets.

6. CONCLUSIONS

An experimental facility has been established to measure the 
response of typical targets for EMI sensors as a function of 
location and orientation. A method of modeling the targets 
as an expansion of simple dipoles with discrete relaxations is 
presented along with a method to invert the measured 
responses to obtain the model parameters. The models are 
valid for any position and orientation of the target.  Targets 
with known models were measured to establish the accuracy 
of the technique.  Numerous other targets have been 
measured and their models catalogued.  
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Fig. 2. Estimated model parameters as a function of relaxation frequency.
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ABSTRACT 

Broadband electromagnetic induction (EMI) sensors have been shown to be able to reduce false alarm rates and increase 
the probability of detecting landmines.  To aid in the development of these sensors and associated detection algorithms, a 
testing facility and inversion technique have been developed to characterize the response of typical targets and clutter 
objects as a function of orientation and frequency.  The models are simple sets of magnetic dipoles with discrete 
relaxation frequencies.  Results will be presented for a range of targets such as shell casings, wire loops, and landmines. 
It is envisioned that the models derived in this work will be utilized to reduce false alarm rates and increase the 
probability of detection for EMI sensors through improvements in both the hardware and the processing algorithms used 
to detect and discriminate buried targets.  
 
Keywords: Electromagnetic induction, EMI, landmine detection, sensor, testing 
 

1. INTRODUCTION 
Simple electromagnetic induction (EMI) sensors are capable of detecting most landmines; however, they will also detect 
every buried metal object such as bottle tops, nails, shrapnel, bullets, etc. This results in an unacceptable false alarm rate. 
This is even more problematic for the detection of low-metal anti-personnel landmines as they are extremely difficult to 
distinguish from clutter using a simple EMI sensor. However, advanced EMI sensors that use a broad range of 
frequencies or a broad range of measurement times along with advanced signal processing have been shown to be 
capable of discriminating between buried landmines and many types of buried metal clutter [1-6].  The broadband 
responses of many targets are relatively invariant to burial depth; however, the responses of some objects vary when they 
are tilted at odd angles, which could cause missed detections.  To aid in the development of the EMI sensors and 
associated detection algorithms, a testing facility and inversion technique have been developed to characterize the 
response of typical targets and clutter objects with respect to location, orientation, and frequency.  The data from these 
measurements will be used to study the response of the targets and develop models that are valid for any orientation of 
the object.  Similar measurements in the field would be very difficult to perform due to the difficulty of accurately 
placing and rotating the target. It is difficult to analytically or numerically predict the response of many of these objects 
with accuracy due to uncertainties in the material parameters and geometry of the metal components in the objects.  Most 
of these objects can be modeled as simple sets of magnetic dipoles with discrete relaxation frequencies.  It is envisioned 
that the models derived in this work will be utilized to reduce false alarm rates and increase the probability of detection 
for EMI sensors through improvements in both the hardware and the processing algorithms used to detect and 
discriminate buried targets.  
 
In this paper, the measurement system is presented in section 2, the model used to represent the targets is presented in 
section 3, the method for inverting the measured data to get the parameters for the model is presented in section 4, and 
representative results are presented in section 5. 
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2. MEASUREMENT SYSTEM 
A laboratory positioner was developed with three automated translational stages (x, y, and z), two automated rotational 
stages (yaw and pitch), and one manually-adjusted rotational stage (roll, not labeled) as indicated in Fig. 1 [7].  An EMI 
sensor array [8] is shown in Fig. 1b with the three-loop target.  This system is used to measure the response of targets in 
a three-dimensional region as a function of angular orientation.  Other typical targets include shell casings, ball bearings, 
coplanar wire coils, and landmines. 
 

             
a)                                                                                                b) 

Fig. 1. Experimental measurement facility for EMI target characterization: a) Single EMI sensor head with automated translational 
(x, y, and z) and rotational (yaw about z and pitch about y) axes labeled, manual rotational axis (roll about x) unlabeled; b) EMI 

sensor head array with three-loop target (inset). 
 

3. MODEL 
A simple dipole model is developed to predict the response of the EMI systems shown in figure 1 to a target that is being 
tested in the system as a function of its position and orientation.   

3.1. Magnetic Polarizability of a Target 
When a target is placed in a time-varying magnetic field, magnetic moments are induced due to two effects: the magnetic 
permeability of the target and the electrical conductivity that allows the induction of current.  If the target is electrically 
small, the magnetic moments can be expressed in terms of the equivalent magnetic dipole moment, m. The dipole 
moment can be calculated from the magnetic polarizability, M, when the exciting field HT is relatively constant over the 
extent of the object: THm M= . A target will often have multiple relaxations and will have a corresponding tensor for 
each relaxation that contains the orientation/symmetry information for the relaxation.  The magnetization for such a 
target can be written as the sum [2]: 
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where Tk is a real constant, ζk is the relaxation frequency, and Tk is a real, symmetric, second rank tensor.  The first term 
is due to the bulk magnetic permeability of the target, which is assumed to be frequency independent, and the second 
term is due to the currents induced in the target. The tensor Tk results from the symmetry of the current path for the kth 
relaxation and can be expressed as sum of (projection matrices) simple dipoles:  
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where Mkn is a positive real constant and nkn are orthogonal unit vectors representing the axis of the nth dipole for the kth 
relaxation frequency.  As an example, a target that consists of three orthogonal loops of copper wire, as in Fig. 1b, was 
constructed with the parameters shown in Table I.   The magnetization of this target is 

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
100
000
000

/1
/ 

000
010
000

/1
/

000
000
001

/1
/)(

z

z
z

y

y
y

x

x
x j

jM
j

j
M

j
jM

ζω
ζω

ζω
ζω

ζω
ζωωM

 
(3) 

 
where ko LAM

k
/2

k μ= , ζk = 2πfrk,  Ak are the areas of the loops and, Lk are the self inductances of the loops with k = x, y, 

z.  
 

Table I. Parameters for the three-loop target. 
Loop Parameters Theoretical Model Parameters Measured Model Parameters 

Orientation Diameter 
(cm) 

Wire 
Gauge 
(AWG) 

Magnetization 
Mk *106 

(m3) 

Relaxation 
Freq. (kHz) 

Magnetization 
Mk *106 

(m3) 

Relaxation 
Freq. (kHz) 

X 5 36 24.5 172 24.4 175 
Y 4 30 14.7 50.2 14.7 52.6 
Z 3 22 8.0 10.1 7.6 10.5 

 

3.2. EMI System 
Consider the example EMI system shown in figure 2 that consists of transmit and receive coils which interact with a 
target.  Here HT is the field at the target generated by the transmit coil when the coil is driven with the current IT, and m 
is the dipole moment induced on the target. It can be shown by using reciprocity that the received voltage due to the 
target is [9, 10]: 
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where HR is the magnetic field generated with the receiving loop driven with the current IR.  Note that HT, HR, and m can 
be, and are likely to be, in different directions. The received voltage is compared to a reference voltage to obtain the 
response R  of the system: 
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where TXX ILjV ω=  is the reference voltage from a reference transformer with mutual inductance LX which is also 
driven by transmit current IT.  The response of the system when the target is rotated by the Euler angles α, β, and γ  can 
be written as 
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where R is a rotation matrix[11]. The angle α is the yaw angle, β is the pitch angle, and γ is the roll angle; the yaw and 
pitch angles are indicated in figure 1. The magnetic fields HT(x, y, z) and HR(x, y, z) are calculated as a function of 
position by direct application of the Bio-Savart law from the geometry of the wires in the coils. 
 
 

 

4. ESTIMATION OF TARGET PARAMETERS 
In a typical measurement, the response R is measured as a function of position and orientation, and in this section, a 
method for inverting the measurement to obtain the model parameters is presented. Direct fitting of the parameters in 
equations 2 and 6 is difficult because of the non-linear relationship between the relaxation frequencies ζk and the vectors 

IT
CT

TH

IR
CR

RH
m

Target  
 

Figure 2a. Diagram of EMI system used with the reciprocity relation with both the transmit and the receive coils 
driven. 
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Figure 2b. Diagram of EMI system as it is physically configured with the transmit coil driven and receive coil used a 
receiver. 
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nkn with the response.  The non-linear relation for ζk is dealt with using the procedure described in [12].  The non-linear 
relation for nkn is dealt with by using an alternate expansion of Tk.  Here, the tensor Tk is expanded in a set of basis 
tensors Tk which span the allowable range of Tk: 
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This expansion allows for solution of the parameters Mkn using a linear least-squares approximation procedure. However, 
there are two disadvantages of this expansion for an arbitrary target: first, the coefficients Mkn are no longer guaranteed 
to be positive, and second, more terms will be required.  Up to six basis tensors can be required for a general target with 
an arbitrary initial orientation.  Fortunately, most targets of interest have symmetry that negates these disadvantages.  For 
this paper, three types of expansions will be considered.  First, all targets can be oriented so that is Tk diagonal [11].  It 
can also be shown that Tk is diagonal for certain targets with symmetries about the coordinate axes[13].  The three loop 
target shown in figure 2b is an example of a target with this symmetry.  For these targets, Tk is expanded as  
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(8) 

Second, some targets have additional symmetry about the z-axis which can be used to further simply the expansion:  
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(9) 

A right regular polyhedral cylinder about the z-axis, a penny, and a rifle cartridge are examples of objects with this type 
of symmetry. Third, objects with even more summery like a sphere, a cube, a regular tetrahedron, etc. will only require 
one term in the expansion:  
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In all of these expansions (8), (9), and (10), the coefficients are positive since they are aligned with the physical dipoles.   
 
A zero-mean down-track filter is applied to the measured response to lessen the effects of positional errors in the x 
direction, to increase the signal to noise ratio, to help mitigate the response to the positioning system, and to mostly 
remove the direct coupling between the transmit and receive coils[8]: 
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where F is the down-track filter described in [8]. The filtered response is obtained at the discrete observations Op by 
combing equations (6) and (7):  
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where ωp is the frequency at the pth observation.  Ppn contains the filtering, the projections of the tensors on the fields and 
the rotation matrices: 
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where xp, yp, zp, αp, βp, and γp are the locations/orientations at the pth observation.  The values of ζk are determined in this 
paper by computing the discrete spectrum of relaxation frequencies (DSRF) as described in [12] on a response that is 
averaged over all the discrete observations Op. The sign of the responses are adjusted before averaging to ensure that the 
averaged response has a non-negative spectrum.  The response is rewritten in a matrix equation for each 
location/orientation: 
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The real and imaginary parts are separated, making the entire system real and ensuring a real answer.  Multiple locations 
and/or orientations are included to get enough measurements to make it possible to solve for the parameters Mkn:   
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Many of the parameters Mkn can be zero since not every relaxation will have all the tensor components and the non-zero 
values of Mkn will be positive.   Since the parameters Mkn are non-negative, the function lsqnonneg in MATLAB which 
uses the algorithm found in [12] is used to solve (15).  

5. RESULTS 
Two targets were measured that are made with loops of wire so that their theoretical parameters are easily estimated to 
demonstrate the accuracy of the modeling technique.  The first loop target is a simple loop of 22 AWG copper wire 
formed into a loop with a circumference of 10 cm, which has a theoretical relaxation frequency of 10.0 kHz. The 
theoretical and estimated model parameters are graphed as a function of the relaxation frequency, fr = ζ /2π, in Fig. 3 for 
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the single-loop target. The agreement between the theory and experiment is very good. Since the loop is z-directed, the 
theory predicts a single z component for the dipole expansion at 10.0 kHz; however, the expansion in equation (8) is used 
for this inversion which allows for three components.  Ideally, the inversion would return exactly zero amplitudes for the 
additional components, but because of measurement errors, the additional components will not always have an amplitude 
of exactly zero. The additional components near 10.0 kHz are seen to very small in figure 3. These components could be 
easily due to a small misalignment of the target in the measurement system. Note that in the measured results, there is 
weak relaxation at 250 kHz that is not predicted theoretically, which we believe is due to the finite thickness of the wire 
that is not taken into account in the theoretical model.   
 
The second loop target is the three-loop target shown in Fig. 1b with the theoretical model (3). The theoretical and 
estimated model parameters are shown in Table I and are graphed as a function of the relaxation frequency in Fig. 4 Each 
relaxation frequency for this target has a different component due to the arrangement of the loops. The agreement 
between the theory and experiment is very good even for this more complex target.  
 
Results are shown in Figures 5 through 11 for a 1983 Lincoln penny, a nail, a 9 mm cartridge, a 0.45 caliber cartridge, a 
ferrite core, and two anti-personnel landmines.  Some of these targets have been chosen for obvious familiarity while 
others were selected as representative examples of common landmines of interest.  The parameters M0n are due to the 
frequency independent magnetic permeability of the targets and are labeled as DC on the figures.  These parameters are 
essentially zero for most of the targets since they are non-magnetic, but are non-zero for the steel nail, the ferrite core, 
and the two landmines since they are magnetic.  All of the magnetic targets except for the ferrite core have relaxation 
terms, Mkn, in addition to the magnetic terms, M0n.  The experimental results for this broad range of targets demonstrate 
the capability of the model to represent the targets. 
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Fig. 3. Estimated and theoretical model parameters for the single-loop target as a function of relaxation frequency. 
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Fig. 4. Estimated and theoretical model parameters for the three-loop target as a function of relaxation frequency.
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Fig. 5. Estimated model parameters for 1983 U.S Lincoln Penny as a function of relaxation frequency. 
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Fig. 6. Estimated model parameters for steel nail as a function of relaxation frequency. 
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Fig. 7. Estimated model parameters for a 9mm NATO/Luger Cartridge as a function of relaxation frequency. 
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Fig. 8. Estimated model parameters for a 0.45caliber S&B Cartridge as a function of relaxation frequency. 
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Fig. 9. Estimated model parameters for a Ferrite Core as a function of relaxation frequency. 
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Fig. 10. Estimated model parameters for an anti-personnel medium-metal landmine as a function of relaxation frequency. 
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Fig. 11. Estimated model parameters for an anti-personnel low-metal landmine as a function of relaxation frequency. 

6. CONCLUSIONS 
An experimental facility has been established to measure the response of typical targets for EMI sensors as a function of 
location and orientation. A method of modeling the targets as an expansion of simple dipoles with discrete relaxations is 
presented along with a method to invert the measured responses to obtain the model parameters. The models are valid for 
any position and orientation of the target.  Targets with known models were measured to establish the accuracy of the 
technique.  Numerous other targets have been measured and their models catalogued.  It is envisioned that the models 
derived in this work will be utilized in detection algorithms to reduce false alarm rates and increase the probability of 
detection for EMI sensors.  
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ABSTRACT

Broadband EMI sensors have been shown to be capable of detecting and discriminating mines and subsurface
explosive objects. It is advantageous to model the EMI frequency response of a target in terms of a discrete
spectrum model (or equivalently a sum of real exponentials in the time domain) that is valuable in discrimination.
However, in practice it is difficult to obtain the model parameters from measurements. We previously proposed a
constrained linear method that can robustly estimate the model parameters when they are nonnegative. In this
paper, we present a modified �p-regularized least squares algorithm, for 0 ≤ p ≤ 1, that eliminates the nonnegative
constraint. Using synthesized data and lab measurements, the proposed spectrum estimation method is shown
to be effective. The results suggest that the proposed method can be used to obtain spectrum of targets for
discrimination. We also propose a regularization parameter selection rule for the �p minimization.

Keywords: Electromagnetic induction (EMI), discrete spectrum of relaxation frequencies (DSRF), sum of
exponentials, �1 minimization, target discrimination, detection

1. INTRODUCTION

Recent research has shown the use of broadband electromagnetic induction (EMI) sensors together with advanced
signal processing are capable of discriminating between certain types of buried targets.1,2 In discrimination, it
is advantageous to model the EMI response as a sum of real exponentials in the time domain or, equivalently, a
discrete spectrum model in the frequency domain. Since the relaxation frequencies in the model are invariant to
the target’s relative orientation and position to the sensor, they can be used as a stable feature of a target.

The EMI frequency response H(ω) of a metallic target can be expressed as:3

H(ωn) = c0 +
K∑

k=1

ck

1 + jωn/ζk
, n = 1, 2, . . . , N (1)

where c0 is the shift, K the model order, ck the real spectral amplitudes, ζk the relaxation frequencies, and ωn

the frequencies at which H(ω) is sampled. The parameter set S = {(ζk, ck) : k = 1 . . . K} is called the Discrete
Spectrum of Relaxation Frequencies (DSRF) or simply the spectrum; each pair (ζk, ck) is one relaxation.

It is difficult in practice, however, to obtain the spectral parameters ζk and ck from a given H(ω). The
primary difficulty comes from when the model order K is unknown, the number of measurements N is small, or
the model parameters must be real. Most existing methods require a good guess of K for the estimation process
to converge. But prior knowledge of K is usually unavailable. Even when the estimation process does converge,
the estimates could be far from the true values.4 In addition, existing methods may return complex estimates
that lack of physical meaning. We previously proposed a constraint linear method that can robustly estimate
DSRFs that are free from the difficulties described above.5 The method however presumes nonnegative spectra
for the targets.
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In this paper, we propose a more general estimation method using �p-regularized least squares (0 ≤ p ≤ 1)
that can estimates spectra consisting of relaxations of mixed signs (bipolar). This proposed method first samples
a range of relaxation frequencies, then linearize the estimation problem, and finally solve the problem using an
approximated �p-regularized least squares. As argued by Chartrand, more accurate estimates may be obtained
using p < 1 than p = 1.6 The �p minimization involves selecting a regularization parameter, which is also
discussed in this paper. As with the previously proposed constrained optimization method, the �p method
proposed here always returns real model parameters and is stable under noise.

The proposed method is found to be effective from tests on synthetic and laboratory data under various
noise levels. Estimating the DSRF from field data also demonstrates that the proposed method can be used
in practice. In the future, more work can be done on developing target discrimination algorithms based on the
estimated DSRF. In addition, more work can be put into creating a better selection rule for the regularization
parameter.

2. ESTIMATION METHOD

The usual approach to estimating the DSRF (i.e., the ζk and ck) is to perform a nonlinear iterative search.
However, we follow the strategy of basis pursuit that linearizes the estimation problem by sampling the relaxation
frequencies.7 The estimation problem then becomes

⎡
⎢⎢⎢⎣

H(ω1)
H(ω2)

...
H(ωN )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1
1+jω1/ζ̃1

1
1+jω1/ζ̃2

. . . 1
1+jω1/ζ̃M

1 1
1+jω2/ζ̃1

1
1+jω2/ζ̃2

. . . 1
1+jω2/ζ̃M

...
...

...
. . .

...
1 1

1+jωN /ζ̃1

1
1+jωN /ζ̃2

. . . 1
1+jωN /ζ̃M

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Z̃

⎡
⎢⎢⎢⎢⎢⎣

c̃0

c̃1

c̃2

...
c̃K

⎤
⎥⎥⎥⎥⎥⎦ + error

h = Z̃c̃ + error (2)

where ζ̃m are the sampled relaxation frequencies, c̃m the corresponding spectral amplitude estimators, h the
observation vector, and Z̃ the overcomplete dictionary. c̃ is the weighted selector vector containing the shift
estimator c̃0 followed by the spectral amplitude estimators. We expect the solution for c̃ to have many zero
elements because M � K, i.e., c̃ will be sparse.

The sampled ζ are generated by enumerating a large set of M possible relaxation frequencies uniformly
distributed in the log-ζ space (M � K). While Austin et al. suggests sampling based on the Fisher information
of the model,8 we found that uniform sampling produces a very similar set of sampled ζ. The uniform sampling,
however, is simpler.

Since c̃ is sparse, we estimate it using the �p-regularized least squares technique, for 0 ≤ p ≤ 1, because it
promotes sparse solutions.9 The objective function is

arg min
c̃
||Z̃ ′

c̃− h′||22 + λ||c̃||pp , 0 ≤ p ≤ 1 (3)

where Z̃
′
=

[
Re(Z̃)
Im(Z̃)

]
, h′ =

[
Re(h)
Im(h)

]
,

and λ is the regularization parameter. Separating the real and imaginary parts in Z̃ makes the whole system
real and produces only real estimates. Ideally, in the optimal c̃, only those c̃m with corresponding ζ̃m that are
near a true ζk will be nonzero, and they will take on the correct spectral amplitudes ck. It follows that a DSRF
can then be deduced from the nonzero estimated c̃m and their corresponding ζ̃m.

The �p-regularized least squares solution for p < 1 can be approximated by an iteratively reweighted �1
algorithm proposed by Candès et al.9 The weights are updated as suggested in Ref. 10. We also adopt the
ε-regularization technique used in the same paper. In summary, (3) is approximated by (see also Ref. 11):
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Algorithm 1: Approximated �p-regularized least squares

Input: Z̃
′
, h′, p, λ, c̃0

1 c̃n ← c̃0

2 for k ← 0 to −8 step −1 do
3 ε← 10k

4 repeat
5 c̃n−1 ← c̃n

6 wn
i ← (|c̃n−1

i |+ ε)p−1

7 c̃n ← arg min ||Z̃ ′
c̃− h′||22 + λ

∑M+1
i=1 wn

i |c̃i|
8 until ||c̃n − c̃n−1||2 <

√
ε/100

9 return c̃n

The �1 minimization problem in step 7 is solved by l1 ls, a Matlab optimizer proposed by Kim et al.12 We
have also found that normalizing the input data h, as well as the columns of Z̃

′
, to have unit �2 norm increases

the accuracy of estimation. Setting entries of c̃0 to all ones also seems to be effective. However, the solution is
insensitive to the initial value of c̃0. It can also be set to other values such as the solution to min ||Z̃ ′

c̃−h′||2.10
The nonzero entries of c̃ selected by (3) along with the corresponding ζ̃m are the relaxations needed in the
estimated DSRF, Ŝ = {(ζ̂l, ĉl) : l = 1 . . . L}.

3. ESTIMATION RESULTS

The proposed estimation method is tested on synthetic, laboratory, and field data to show its functionality,
accuracy, and stability. The hardware system used is a wideband EMI sensor operating at 21 frequencies
approximately logarithmically distributed over the range 300 Hz–90 kHz (2.5 decades).13 The synthetic data is
generated in accordance with the hardware specification. The range of ζ for estimation is chosen such that
log(ζ̃min) and log(ζ̃max) are 2.45 and 6.62, respectively, i.e., 4.17 decades.

All estimations are performed with M = 100,5 and all presented spectra are normalized such that
∑ |ci| = 1.

Spectral amplitudes less than 10−5 are not displayed. Unless specified, p = 0.5 is chosen as a representative
case. The regularization parameter λ is chosen based on the method described in Section 4. Results presented
in this section may achieve higher accuracy with a more sophisticated λ selection rule. Here we demonstrate
the usability of the proposed algorithm with a simple λ selection rule. See Section 4 for more discussion on the
choice of λ.

3.1 Dissimilarity Measure Between Two DSRFs

In order to evaluate the goodness of the estimated DSRF, we need to define a measure of dissimilarity that is
appropriate for sparse spectra with multiple peaks. We use the Earth Mover’s Distance (EMD)14 which quantifies
the “amount of work” to morph one spectrum into the other. Strictly speaking the EMD is only defined for
positive spectra, but we can account for negative spectral amplitudes by defining the distance function between
two relaxations (ζi, ci) and (ζ̂j , ĉj) to be:

dij =
{ | log ζi − log ζ̂j | , ciĉj ≥ 0

1 + | log ζi − log ζ̂j | , ciĉj < 0

which penalizes relaxations with different signs. The penalization can be defined differently as suitable. Spectra
are made nonnegative and normalized (

∑ |ci| = 1) prior to the EMD computation. Finally, notice that the EMD
is measured in decades because it is examined in log-ζ space.
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3.2 Synthetic Six-relaxation DSRF
We test the proposed �p method (using p = 0.5) on a six-relaxation DSRF synthesized at 70 dB SNR with
additive white Gaussian noise (Fig. 1). This is a case that cannot be handled by traditional nonlinear parameter
optimization,4 or the nonnegative linear method.5 Though shifted slightly, all six relaxation frequencies are
recovered by using Algorithm 1. The estimation result is satisfactory because the model parameters are real
and the deviation from the truth is small. The EMD between the estimated and the true DSRF is 0.15 decades.
There is one extra relaxation near logζ=2 in the estimated spectrum, but it has a small amplitude and can be
neglected.

2 3 4 5 6 7

−0.2

−0.1

0

0.1

0.2

logζ

c

 

 

True
Lp, p=0.5
Lp, p=1

Figure 1: Theoretical and estimated DSRF of a six relaxation target.

The same spectrum is also estimated with p = 1 using l1 ls. In this case, many extra relaxations are
introduced by the fitting process (Fig. 1). However, because the extra relaxations are very small in amplitude,
the EMD is still small – 0.16 decades. Real targets are not likely to have a spectrum with many small relaxations
around a strong relaxation. In fact, Baum argues that physical relaxation frequencies are discrete.3 However,
the small relaxations introduced by p = 1 seem to give a continuous spectrum of relaxation frequencies. In this
sense, p < 1 gives a sparser solution that more accurately resembles the expected physical spectrum even though
this may not always be reflected in the EMD measure.

3.3 Signal to Noise Ratio
To see how the proposed method performs in noise, a Monte Carlo simulation versus SNR is performed. The true
spectrum is from a target with a four-relaxation DSRF including negative relaxations. The simulation result
shows the robustness of the estimation method at different SNRs (Fig. 2). The EMD between the estimate
and the truth increases as the SNR decreases. This suggests that the proposed method is usable in a range
of SNR where the EMD is below some threshold. This threshold, however, depends on the application of the
estimated spectrum. For example, if the DSRFs are used as features for classification, a more robust classifier
may tolerate worse estimations and, therefore, allow lower SNR. For our purpose, spectra with an EMD below
0.1 are considered visually similar, those with an EMD above 0.2 exhibit visual differences, but may still resemble
each other. Thus, we consider 50 dB as the threshold SNR. In our laboratory measurements, a typical SNR for
loop targets is 70 dB.
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Figure 2: Monte Carlo simulation on goodness of estimation vs. SNR. Sample size is 100 per SNR.
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3.4 Laboratory Data

We verify the functionality of the estimation method on laboratory data where we know the theoretical DSRF. An
automated, non-metallic measurement facility is used to measure EMI responses of a target at various positions
and orientations relative to the sensor.15 We observe that the proposed method is effective with laboratory data.

A target that consists of three mutually orthogonal copper loops is examined. The loop diameters and thick-
ness are 3/20, 4/30, and 5/36, respectively in cm/AWG(American Wire Gauge). We pick a specific orientation
and position relative to the EMI sensor that best shows the existence of bipolar relaxation amplitudes in a
spectrum. The target frequency response of this configuration is shown in Fig. 3a, the SNR was estimated to be
38 dB, and its estimated DSRF in Fig. 3b. Theoretical data are also displayed. We see that the estimate and
theory agree well, and the EMD between the theoretical and estimated DSRF is 0.10 decades.
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Figure 3: (a) Frequency response of three mutually orthogonal copper loops. The frequency response is normal-
ized such that ‖h‖2 = 1. (b) Theoretical and estimated DSRF of the response in (a).

−0.3−0.2−0.1 0

−0.25
−0.2

−0.15
−0.1

−0.05

im
ag

x=−2, SNR=39

−0.3 −0.2 −0.1
−0.2

−0.1

0

x=−1.5, SNR=38

−0.3 −0.2 −0.1
−0.2

−0.1

0

x=−1, SNR=37

−0.4 −0.2 0

−0.1

0

0.1

0.2

im
ag

x=−0.5, SNR=37

−0.4 −0.2 0 0.2

0

0.2

0.4
x=0, SNR=37

−0.4−0.2 0 0.2

0

0.2

0.4

x=0.5, SNR=37

−0.4−0.2 0 0.2

0

0.2

0.4

real

im
ag

x=1, SNR=38

−0.4−0.2 0 0.2
0

0.2

0.4

0.6

real

x=1.5, SNR=38

−0.4−0.2 0 0.2 0.4
0

0.2

0.4

0.6

real

x=2, SNR=39

(a)

2 3 4 5 6 7
−1

0

1

c

x=−2, EMD=0.088

2 3 4 5 6 7
−0.5

0

0.5
x=−1.5, EMD=0.083

2 3 4 5 6 7
−1

0

1
x=−1, EMD=0.33

2 3 4 5 6 7
−1

0

1

c

x=−0.5, EMD=0.19

2 3 4 5 6 7
−1

0

1
x=0, EMD=0.18

2 3 4 5 6 7
−1

0

1
x=0.5, EMD=0.14

2 3 4 5 6 7
−1

0

1

logζ

c

x=1, EMD=0.13

2 3 4 5 6 7
−1

0

1

logζ

x=1.5, EMD=0.035

2 3 4 5 6 7
−1

0

1

logζ

x=2, EMD=0.048

(b)

Figure 4: The plots share the same annotation as Fig. 3. (a) Frequency responses of the three mutually orthogonal
copper loops at nine different x locations. (b) Theoretical and estimated DSRF of the corresponding responses
in (a). The SNR is measured in dB, x positions in cm, and EMD in decades.
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Next we examine the changes in the DSRF as the target moves relative to the EMI sensor. The same target
configured at a fixed orientation is displaced at different positions along a horizontal axis (x). The vertical
distance between the target and sensor is 6 cm. The EMI sensor is located at x = 0. Overall, the theory and
measurement agree (Fig. 4).

As expected from the theory, while the frequency response changes dramatically as the target moves along
the x axis, the corresponding change in the spectral domain only occurs in the spectral amplitudes. The three
dominant relaxation frequencies remain unchanged. The proposed method successfully estimates the spectra that
agree with this phenomenon. All three relaxation frequencies are consistently estimated. The extra relaxations
all have small amplitudes that can be safely ignored. This invariant property of the relaxation frequencies makes
the DSRF valuable especially for target discrimination.

3.5 Field Data

Here we demonstrate the functionality of the proposed method when applied to field data. From the consistency
of the estimated DSRF, we suggest that these spectra can indeed be used as features for target discrimination.
The proposed method is applied to three types of landmines. For each type of mine, measurements were collected
from several mines buried at different depths and locations.

When estimating the DSRF from field data, we observe that the estimation method sometimes returns a
single relaxation at ζ̃1 or ζ̃M (the endpoints of the sampled ζ domain), as we saw in the estimate in Fig. 1. This
artifact could be easily removed manually or by a weighted least squares term. For this section, we adopt the
latter approach to eliminate estimated relaxations at endpoints. This is simply done by replacing Z̃ and h in
Eq. (3) with Z̃w and hw, respectively, where

Z̃w = W Z̃,
hw = Wh,

and W is a diagonal matrix with weights [w1, w2, . . . , wN ] on the diagonal. To discourage over fitting at endpoints,
we put less weight on the highest and lowest frequencies.

Using the weighted method, the DSRF of each sample was estimated and then plotted together with others
of the same type (Figs. 5–7). For all three types of mine, the estimated DSRFs have consistent shapes. The
relaxations that appear to be inconsistent are small in amplitude. For each type of mine the stronger relaxations
share the same relaxation frequencies. While the true spectra of these field targets are unknown, from the
consistency of the estimated spectrum, we have good faith that what is obtained is accurate. Various simulations
and laboratory results from previous sections also support this view.

−5 0 5

x 10
−6

−5

−4

−3

−2

−1

0
x 10

−6

real

im
ag 1

6 7

4
3

2

5

(a)

2 3 4 5 6 7

1

2

3

4

5

6

7

logζ

S
am

pl
e

 

 

0

0.2

0.4

0.6

(b)

Figure 5: Frequency responses and estimated DSRFs of seven Type-I mines: a low-metal content, magnetic, weak
EMI response antipersonnel mines. The SNR ranges from about 20 dB to 35 dB. (a) Raw frequency responses.
(b) Estimated DSRFs. The spectral amplitude is represented by the color intensity.
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Figure 6: Frequency responses and estimated DSRFs of eight Type-II mines: a medium-metal content, magnetic,
strong EMI response antipersonnel mine. The SNR ranges from about 55 dB to 70 dB. (a) Raw frequency
responses. (b) Estimated DSRFs. The spectral amplitude is represented by the color intensity.
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Figure 7: Frequency responses and estimated DSRFs of two Type-III mines: a medium-metal content, strong
EMI response antipersonnel mine. The SNR is around 50 dB. (a) Raw frequency responses. (b) Estimated
DSRFs. The spectral amplitude is represented by the color intensity.

4. CHOOSING λ

In this section, we examine the behavior of the proposed method in relation to the regularization parameter λ.
We observe that the optimal λ that gives the minimum estimation error is quasi independent of the model order
and has a simple relation to the SNR. We propose a simple λ selection formula that exploits this observation.
All discussions and figures presented here assume p = 0.5 unless otherwise specified.

To understand how the goodness of estimation changes with λ and SNR, we conduct a cross-validation-
like simulation. First, we build a collection of synthetic spectra with different model orders and a variety of
distributions of relaxations. For each spectrum at a fixed SNR, the spectrum is estimated 100 times for each
λ within a range, and the average goodness of fit, measured by the EMD between the available truth and the
estimate, is recorded. This is done for a range of SNRs.

The simulation result (Fig. 8a) shows that for each model order the EMD (error) surface is well-behaved (i.e.,
smooth) with respect to the SNR and λ. Moreover, the surfaces are convex-shaped, implying that the minimum
EMD is achievable by a unique λ for a specific model order and SNR. The wide valley of the surface also shows
that the goodness of estimation is not very sensitive near the optimal λ.

On the other hand, we observe that for all model orders, the near-minimum EMD (the valley of the surfaces)
occur in about the same SNR-λ region. This means that a single optimal selection rule may be applicable for
all model orders. We confirm that this is possible when we average the EMD surfaces of different model orders
(Fig. 8b). The averaged surface still exhibits all properties of a single model order surface - smooth, convex, and
wide valley. From the averaged surface, we observe that using only the SNR value, we can pick a λ that is near
optimal for all model orders. Tracing out the optimal λ at each SNR, we find that the optimal λ curve is almost
linear (Fig. 8b). Then, intuitively, we approximate the optimal λ with a semilog function of SNR. This is done
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by fitting the optimal log-λ curve with a linear function. Weights may be added to promote certain SNR’s that
are more important.
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Figure 8: (a) Mote Carlo simulation of the goodness of estimation (EMD) of spectra of different model orders
(one to six). Each spectrum constitutes one surface in the figure. (b) Average of EMD surfaces in (a). The curve
with asterisk markers traces out the optimal λ’s. The line with square markers approximates the optimal λ’s.

For our problem setup, the λ is chosen by (also shown in Fig. 8b)

log λ = −0.05 · SNR− 2.2 (4)

Since the surface has a wide-valley, the resulting λ selection rule is near-optimal as long as it lies in the valley,
which is true in this case. In practice, this log-λ selection rule that is linear in SNR allows the regularization
parameter to be determined with negligible computation time. When processing the laboratory data, we use (4)
along with an estimate of the SNR to determine λ for use in Algorithm 1. The same empirical method can be
repeated for other p’s, and the result is also a linear relationship between log λ and SNR.
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CALIBRATION TECHNIQUE FOR BROADBAND ELECTROMAGNETIC
INDUCTION SENSORS
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ABSTRACT

A technique for calibrating broadband electromagnetic 
induction (EMI) sensors is presented.  The technique is very 
simple and uses a powdered ferrite core as a calibration 
standard.  The purpose of the calibration is to improve the 
accuracy of the senor which enhances its ability to 
discriminate between different types of targets.

Approved for public release; distribution is unlimited.

Index Terms— Electromagnetic induction, EMI, landmine
detection, sensor

1. INTRODUCTION

Broadband electromagnetic induction (EMI) sensors 
have been shown to be able to reduce false alarm rates and 
increase the probability of detecting landmines [1-4].  This 
requires that the EMI sensor measure the response of both 
the target and the soil very accurately.  Although it is 
possible to carefully design the sensor to achieve highly 
accurate measurements without any calibration, the resulting 
restrictions place limits on some of the possible hardware 
configurations that can help the performance of the system.  
Even if the system is designed to be highly accurate without 
calibration, a calibration can still improve the accuracy or at 
least validate it.

Several types of calibration targets were investigated.  
Loops of wire have a response that is easily calculated and 
are often used as EMI targets [5], but the calculation is only 
accurate for very thin wires, and the loops are also difficult 
to make with precision.  For example, the solder joint used 
to connect the wire can significantly affect its response [6].  
Metallic spheres have a response that can be precisely 
calculated if their electromagnetic properties are precisely 
known [5], but multiple sizes of spheres will likely be 
needed to calibrate the sensor over the entire frequency 
range.  

A simple method that uses a magnetic material to 
calibrate the sensor is presented in this paper.  The method 
assumes that the magnetic material is purely magnetic and 
does not have any eddy-current losses.  Several magnetic 
materials were considered such as paramagnetic and 

ferrimagnetic materials.  The paramagnetic materials were 
not used because of signal to noise issues due to their weak 
magnetic response.  Soft ferrites are engineered 
ferrimagnetic materials which are designed to have constant 
permeability and low eddy-current losses in the frequency 
range of the EMI sensor.  Several solid ferrite cores were 
tried for the calibration, but the effects of the eddy currents 
were discernable.  Finally, we settled on powdered ferrite 
cores which have even lower eddy-current losses.  We used 
Magnetics Molypermalloy Powder [7] (MPP) cores with a 
relative permittivity of 26.  The effects of eddy currents 
were not observed with these cores.    

2. PROCEDURE

Consider an idealized EMI system, Fig.1, that consists 
of a sensor head that has a transmit and a receive coil which 
interact with a target.  Here HT is the field at the target 
generated by the transmit coil when the coil is driven with 
the current IT, and M is the magnetic polarizability of the 
target. It can be shown by using reciprocity that the received 
voltage due to the target is [8]:

T
T
R

R
R I

j
V MHH (1)

where HR is the magnetic field generated with the receiving 
loop driven by the current IR.  The received voltage is 
compared to a reference voltage to obtain the ideal response 
R of the system:

T
T
R

RTXX

R

IILV
V

R MHH (2)

where TXX ILjV is the reference voltage from an ideal
reference transformer with mutual inductance LX which is 
also driven by transmit current IT.

The response can be viewed as a projection of the 
magnetic polarizability which is a complex, frequency 
dependent, symmetric, second-rank tensor.  The response 
forms a shape when drawn on an Argand diagram with 
frequency as a parameter.  These shapes can be used to 
discriminate between different types of metal targets.  It is 
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important that the shape of the response be measured as 
accurately as possible to aid in discrimination.  To calibrate 
the system, consider a purely magnetic target, for which the 
magnetic polarizability is purely real and frequency 
independent so the ideal response will also be purely real 
and frequency independent.  

The response RM actually measured by the system will 
not be purely real and frequency independent due to 
imperfections in the hardware:  

nC
nX

nR
n

MX

MR
nM RR

G
G

S
V
V

R (3)

where n are the discrete measurement frequencies, GR and 
GX are the gains of data acquisition system, S accounts for 
the effects of the shielding, RC accounts for the response due 
to the mutual coupling between the coils.  Ideally, GR, GX,
and S will be frequency independent and real; however, in a 
practical system they will be frequency dependent and 
complex.  Ideally, RC is zero, but it is finite in a practical 
system. GR and GX include the effects of the non-ideal nature
of the coils, amplifiers, and digitizers.  S is due to the 
shielding of the EMI head which partially shields the 
magnetic fields in addition to the electric fields at the higher 
frequencies [9].  This results in an error that is frequency 
dependent and worsens with increasing frequency. 

The difference between a measurement with a target 
present and not present is made to eliminate the effect of RC:

RGCR
G
G

S

RRR

n
nX

nR
n

nnn MMM

TargetNoTarget'

.
(4)

Although we know that M and R are real and frequency 
independent, we do not know their exact values so the 
calibration is separated into two parts: G and C. G is a real 
and frequency-independent gain, and C is the frequency 

dependent calibration.  The frequency-dependent part of the 
calibration is estimated as

i

M

M

N

i
i

n
n

R
N

R
C

1i
'

'

1Real (5)

where we are assuming that the hardware imperfections have 
minimal effects at the lowest frequencies which is true for all 
of our systems: C(low frequencies) 1.  Ni is the number of 
frequencies used in the normalization and is typically 1 to 7
where i=1 corresponds to the lowest frequency.  Using the 
same assumption, G is 

1

1

1

1
1

X

R

X

R

G
G

G
G

SG (6)

since S is essentially one at the lowest frequency. Then, the 

calibrated measurement is 

n

n
n

C
M GC

R
R M

'

.
(7)

3. RESULTS

The calibration technique has been used to calibrate two
systems with good results.  The first system (System A) 
which is presented in [9] and [10] is quite accurate without 
calibration, and the second system (System B) which has 
much larger coils and more turns on the coils is very 
inaccurate without calibration because of the interaction of 
the impedance of the coils and the preamplifiers.  

Table I
Variation in the response to the MPP core

shown in Figs. 2 and 3.
System Uncalibrated Calibrated

A 3% 0.06%
B 88% 1.5%

In Figs. 2 and 3 the response of the systems to a MPP 
ferrite core is graphed as a function of frequency which is 
expected to have a constant real part and a null imaginary 
part.  This is clearly not true for the uncalibrated response of 
both systems, but the calibrated responses are seen to be 
much better.  The variation in the responses before and after 
calibration is summarized in Table I. To obtain the 
calibrations C and G, numerous measurements of the MPP 
core response were measured with it in different positions 
and orientations and averaged together.  For the response 
graphed on figs. 2 and 3, the response was measured for a 
single orientation of the core using the down-track filter as is 
in [9, 10].

The response of these systems to a wire loop is 
presented in Figs. 4 and 5 both as an Argand diagram and as 
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a function of frequency. The theoretical response of these 
targets is easy to compute and is included on the graphs [5].  
The calibrated response is closer to the expected result for 
both systems. The improvement is small but noticeable for 
System A, but with this small correction, the spectrums 
computed using the methods presented in [8, 11] were 
noticeably better.  The improvement with System B is large 
and makes the results much more valuable to use in 
discrimination.  The calibrated results also make it much 
easier to account for the magnetic properties of the soil
within a detection algorithm.
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ABSTRACT
Several landmine detection techniques using electromag-

netic induction (EMI) sensors have been proposed in the

past decade. In this paper, we propose a class of detection

techniques based on the discrete spectrum of relaxation fre-

quencies (DSRF). Two DSRF detection methods are demon-

strated: one using the support vector machine and one using

the k-nearest neighbor method. A soil model is also proposed

to identify EMI response from the magnetic properties of the

soil. A detection framework is suggested to incorporate the

soil model and the classifier. The robustness of landmine

detection using the DSRF is demonstrated.

Approved for public release; distribution is unlimited.

Index Terms— Electromagnetic induction (EMI), dis-

crete spectrum of relaxation frequencies (DSRF), detection,

support vector machine.

1. INTRODUCTION

Landmine detection techniques based on EMI sensors have

been actively developed in the past decade. Gao et al. sug-

gested a Bayesian classification algorithm which uses the fre-

quency response of targets as a feature [1]. Fails et al. [2] and

Ramachandran et al. [3] both demonstrated success in detect-

ing mines using nearest-neighbor classifiers based on an EMI

model developed by Miller et al. [4].

We propose to detect landmines using an EMI model

based on the discrete relaxations of the target [5]. This model

has several attractive features, including a sound theoretical

treatment, physical significance of model parameters, and

orientation invariance. The EMI frequency response of a

metallic object can be expressed as a sum:

H(ω) = c0 +

L∑
k=1

ck
1 + jω/ζk

, (1)

where c0 is the shift, L the model order, ck the real spectral

amplitudes, and ζk the relaxation frequencies. The parameter

set S = {(ζk, ck) : k = 1 . . . L} is the DSRF. The DSRF of a

target can be estimated using methods proposed in [6, 7].

The relaxation frequencies are invariant to the orientation

and position of the target; only the spectral amplitudes change

when the target is rotated or moved [5]. Therefore, the ζk
can be used as a feature that is intrinsic to a target. Further-

more, since most landmines are buried in consistent orienta-

tions, the ck are also often similar among different mines of

the same type. Figure 1 demonstrates the consistency of the

DSRF across instances of two different types of landmine [6].

While consistent within its own type, the two mines clearly

have distinct DSRFs.

We propose to detect landmines using the DSRF as a fea-

ture. We propose two landmine classification methods: one

based on the support vector machine (SVM) and one based

on the k-nearest neighbor (kNN). A soil presecreener is also

proposed. We suggest a detection framework that incorpo-

rates the proposed DSRF classifier and the soil prescreener.

The resulting performance is robust and comparable to exist-

ing methods. The detection process is also very fast when

using the SVM.

2. DETECTION METHODS

2.1. Target Classifier

We propose to classify a target based on its DSRF using the

kNN or the SVM. With only two classes, landmine and not-

landmine, the classification problem reduces to a detection

problem.

In the case of kNN, the distance measure used to quantify

the distance between two DSRFs is the Earth Mover’s Dis-

tance (EMD) [8, 6]. The Euclidean distance is a poor measure

of the similarity between the two DSRF because the relax-

ations of two DSRFs are usually sparse and not aligned. How-

ever, the EMD can account for the difference in the number

of relaxations as well as when the relaxations are not aligned.

In the case of SVM, given a target’s DSRF parameter set

S, the target is classified/labeled using the decision function:

f(S) = sign

(∑
i=1

αiyiK(Si
T , S) + b

)
, (2)
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Fig. 1. Estimated DSRF of landmines. The spectral amplitude ck is represented by the intensity: the darker the color, the larger the amplitude.
(a) Seven low-metal content, nonmagnetic, moderate EMI response antipersonnel mines. (b) Eight medium-metal content, magnetic, strong
EMI response antipersonnel mines.

where K is the kernel (explained shortly), Si
T the training

data, yi ∈ {−1,+1} the training class labels, αi the trained

weights, and b the trained threshold. (Only a few αs are

nonzero, i.e., the αs are sparse. The Si
T that correspond to

the nonzero αi are called the support vectors.)

For the kernel, we use a generalized radial basis func-

tion [9]:

KEMD(S1, S2) = exp(−ρEMD(S1, S2)), (3)

where ρ is a scaling parameter. For brevity, (3) is called the

EMD kernel [10]. While it is not proven that the EMD ker-

nel satisfies Mercer’s condition (i.e., KEMD is positive semi-

definite), it is observed that the EMD kernel is positive semi-

definite [10] in practice. At the least, it should be noted that

kernels that do not satisfy Mercer’s condition can still perform

well [9].

2.2. Soil Prescreener

A soil model and a prescreener based on this model is pre-

sented here. The prescreener filters out responses that are like

those due to the magnetic properties of the soil. The pre-

screening process is very efficient.

The frequency dependence of the soil responses share a

similar trend. The real part has a linear trend with respect

to the log-frequency, and the imaginary tends to be a con-

stant [11, 12]. From these observations, we propose a model:

HG(ω) = p1 + p2

(
lnω + j

π

2

)
, (4)

where p1 and p2 are model parameters. Given a response

measured at N frequencies ω1, . . . , ωN , the response can be

fitted to the model (4) via a least-squares minimization, which

can be performed very efficiently.

The responses for 6000 samples collected at locations that

reported to have no metal content are shown in Fig. 2. Some

magnitudes are strong (> −125 dB) because metal targets

0 1000 2000 3000 4000 5000 6000
−150
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−140

−135

−130
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−120

−115

−110

−105

sample

dB

 

 

Magnitude of the response
Magnitude of the residual

Fig. 2. Samples of blank responses fitted to the soil model (4). The
samples are ordered so that response decreases with increasing sam-
ple number.

were actually present nearby. For most samples, the mag-

nitude of the residual is noticeably smaller than the response

indicating that the sample fits the soil model well.

Because the model describes a behavior very specific to

the soil and is not usually observed in metallic objects, the

model can be used as a prescreener to determine whether a

target is present based on the fitting residual. Given a fre-

quency response H(ω), the response is fitted to (4), and then

the residual of the fit ε is used to determine whether a metallic

object is present. A threshold θ is chosen to decide whether a

metallic object is present:

target present =
{

true if ε > θ
false otherwise.

(5)

A reasonable choice of θ for our measurement is −135 dB, as

suggested by Fig. 2.
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2.3. Detection Framework

A detection framework that incorporates the soil prescreener

and the target classifier is presented here. The framework

is designed to be suitable for practical application where

measurements are obtained sequentially in real-time. It is

designed according to the scenario where a detection ve-

hicle carrying the EMI sensors is driven forward and EMI

responses hn are collected sequentially.

The prescreener first screens out the responses that are ab-

sent of metallic objects. Responses that pass the prescreener

(indicating a target is present) are then processed to estimate

their DSRFs. Based on the estimated DSRF, the classifier then

labels the responses as landmine or not-landmine.

The use of the prescreener significantly reduces the

amount of data processed by the DSRF estimator and the

target classifier. Because the prescreener takes very little

computation time compared to the estimator and the classi-

fier, the average computation time is also greatly reduced by

using the prescreener.

A simple voting mechanism is employed to discourage

temporary mislabeling of landmines by taking advantage of

the sequential measurements. As the detection vehicle passes

over the target, often multiple measurement are collected con-

secutively for that target. In this case, multiple labels xi are

produced, and a more confident decision can be made based

on the recent labels. We determine that a landmine is present

only when p out of the past q labels are marked as landmine.

The voting rule reduces false-alarm rate and increases the

confidence level.

The proposed framework is summarized as follows:

Detection Framework

Input: hn, θ , p, xn−q+1 . . . xn−1

Output: decisionn

1 Fit hn to soil model (4) and obtain residual ε.
2 if ε < θ then
3 xn = 0

4 else
5 Ŝ = estimated DSRF of hn

6 xn = classify(Ŝ) (0 or 1)

7 if
∑n

i=n−q+1 xi > p then
8 decisionn = 1

9 else
10 decisionn = 0

11 return decisionn

3. PERFORMANCE

The proposed method is applied on a data set acquired from

a testing field that contains 62 types of targets, including 26

types of landmines as well as various types of metallic and

70 71 72 73 74 75
−200

−100

0

O misc T I

grid number

dB

Fig. 3. A snapshot of the output of the detection framework. The
curved lines are the strength of the responses measured at 21 fre-
quencies. The target types are noted above the grid number. The blue
lines (near -200 dB) indicate points that are marked as soil; black
dots (at -100 dB) indicate points that are labeled as landmines; red
diamonds indicate a declaration of landmine.

nonmetallic clutter. The testing field is divided in to 11 lanes

each lane containing 20 grid cells; there are 220 grid cells

total. About 145 EMI responses are collected per grid cell. In

total, 32,148 responses are collected for the whole field. The

acquisition hardware used is described in [11].

The EMI responses are collected sequentially as the detec-

tion vehicle is driven down the lane, and the responses are fed

into the detection framework described earlier. The parame-

ters are chosen such that p = 5, q = 20, and θ = −135 dB.

A snapshot of the output of the framework is shown in Fig. 3.

Because the way the responses are filtered [11], a target re-

sponse has multiple lobes (e.g., grid 71 to 74), and only the

main (center) lobe is used for processing. The center lobe is

determined by the sign of the strongest imaginary part of the

response.

In Fig. 3, we see that the soil prescreener is quite effective

and the voting rule reduces false alarms. In grid 72, a miscel-

laneous clutter is labeled as a landmine for a few times, but

because the number of mislabeling is small (< p), a landmine

is not declared and a false alarm is avoided.

The performance of the detection framework using the

SVM is summarized in Fig. 4. The receiver operating char-

acteristic (ROC) curve achieves a high detection rate of 0.96

at a low false-alarm rate of 0.10. Other operating points also

provide satisfactory performances.

The detection process takes little computer time. With

a single pre-trained SVM, the whole test field (32,148 re-

sponses) can be classified using the above process (including

estimating the DSRF) in 30 seconds on a 2.66 GHz CPU with

960 MB RAM.

The performance of the detection framework using the

kNN is also shown in Fig. 4. The performance is compara-

ble to that of the SVM. However, the processing time is much

longer (10+ minutes) due to the many distance computations

required to find the nearest neighbor per measurement. While

the kNN may not be suitable for real-time application, it is

quite robust when sufficient training data are available, as is

the case here. When the training data is scarce, the SVM is

likely to have smaller generalization error.

The classifiers are trained per grid using a leave-one-out
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Fig. 4. ROC curves of the proposed method and that of Fails et
al. [2]. For the kNN ROC curve, k = 7.

cross-validation (LOOCV), i.e., the classifiers are trained at

each grid with responses from the other 119 grids. Only the

strongest responses in a grid are used for training.

For comparison, Fig. 4 includes the ROC curve for the

method of Fails et al. [2] where the performance is evalu-

ated on the same data set using LOOCV. While the proposed

method is slightly better, we note that the simulation done by

Fails et al. is different from ours. Their method does not

utilize sequential measurements.

We note that all the ROC curves in Fig. 4 saturate at 0.99

detection rate. This is due to the misclassification of one par-

ticular landmine. Upon close examination, we found that the

response of this landmine is very weak and is indistinguish-

able from the soil response. In our framework, this target is

filtered out by the prescreener.

More research can be done to further improve the per-

formance. Other features, such as the soil response and

the magnetic property of targets, may be included to provide

even more robust performance. Here we only demonstrate the

strong potential of using the DSRF for landmine detection.
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SUMMARY

This thesis presents a robust method for estimating the relaxations of a metallic object

from its electromagnetic induction (EMI) response. The EMI response of a metallic object

can be accurately modeled by a sum of real decaying exponentials. However, it is difficult

to obtain the model parameters from measurements when the number of exponentials in

the sum is unknown or the terms are strongly correlated. Traditionally, the time constants

and residues are estimated by nonlinear iterative search that often leads to unsatisfactory

results.

In this thesis, a constrained linear method of estimating the parameters is formulated by

enumerating the relaxation parameter space and imposing a nonnegative constraint on the

parameters. The resulting algorithm does not depend on a good initial guess to converge to

a solution. Using tests on synthetic data and laboratory measurement of known targets the

proposed method is shown to provide accurate and stable estimates of the model parameters.

ix



CHAPTER I

INTRODUCTION

The landmine crisis remains today as landmines continue to maim or kill civilians everyday

worldwide. The International Campaign to Ban Landmines reported that in the year of

2009, landmines and explosive remnants of war caused about 4000 casualties worldwide, of

which over 60% are civilians [19] and more than 30% are children. Much effort and research

has been invested in remediating landmines with one of the primary tasks being the detection

of the landmine itself. However, landmine detection can suffer from a high false-alarm rate

as the detectors also detect other metallic non-mine objects like gun shells, metal cans, and

shrapnel. Therefore, it is of strong interest to discriminate between landmines and metallic

non-mine objects.

Recent research has shown that discrimination between certain types of metallic objects

(targets) is possible by using broadband electromagnetic induction (EMI) sensors together

with advanced signal processing [6, 21, 11, 27, 9, 26]. Target discrimination using broad-

band EMI sensors is possible because the EMI response of a target is strongly related to

the target’s physical size, shape, orientation, and composition. EMI sensors work by illu-

minating a target of interest with a time-varying magnetic field, and then detecting the

scattered magnetic field which is generated by the eddy currents induced on the target.

The broadband EMI sensors measure the scattered field at a broad range of frequencies

or measurement times. In a broadband EMI system, a target can be represented by its

response at a small number of frequencies. The measured response can be fitted to a model,

and discrimination of the target is performed based on the fitted model parameters.

The goal of this work is to model an EMI response in terms of its relaxations to assist

target discrimination. Several different EMI models have been developed to analyze the

EMI response of a target. These models can be categorized into two: continuous and

discrete. While this thesis is concerned with the discrete model, the continuous model is
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used by many [9, 26], and a discussion on this model is also provided.

1.1 Continuous Distribution of Relaxations

Several existing EMI models can be identified with parametric models employed in polymer

science, which have an underlying continuous distribution of relaxations. For example, the

parametric models proposed by Miller et al. [24] (which is widely used) can be rewritten

in the form of the Cole-Cole dielectric relaxation model [5]. Other theoretical model for

canonical targets can also be identified similarly [13, 35].

The fact that the dielectric response of materials has similar characteristics to the EMI

frequency response allows the models and methods developed for dielectric materials be

applied to the EMI response. Here, the analysis used in polymer science is employed to

study some of the existing EMI models. It is advantageous to do so since many of the

dielectric models and methods have been well-studied over the past fifty years, and much

is known about the behavior and properties of the models. Other well-known dielectric

models, such as the Havriliak-Negami and Cole-Davidson models could also be used in

modeling the EMI response of targets with more complex shapes [8, 16].

A more general model to describe the models mentioned above is the distribution of

relaxation times (DRT), which is an analysis tool used in polymer science to characterize

materials [18]. The normalized DRT G(τ) is defined as:

H(ω) = g0 + g∆

∫ ∞
0

G(τ)

1 + jωτ
dτ , (1)

where H(ω) is the frequency response, τ the relaxation time, and g0 and g∆ are constants;

G(τ) is normalized to have unity area.

The models mentioned above can all be expressed in terms of the DRT. For example,

the Cole-Cole model (hence, Miller’s model) and its DRT are [1]

HCC(ω) = g0 +
g∆

1 + (jωτ0)α
, (2)

and

GCC(τ) =
1

2πτ

sin(απ)

cosh(α log(τ/τ0)) + cos(απ)
, (3)

where τ0 and α are model parameters.
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It should be noted that the parametric models can be restrictive in the sense that the

models have assumed underlying distribution and may not be appropriate for objects of

more general shape. For example, GCC(τ) is restricted to be symmetric with respect to τ0

in log-τ space because of the assumed structure of HCC(ω). However, not all targets have

symmetric DRTs. Using Cole-Cole to model such targets would result in a loss of informa-

tion. Describing a target in terms of DRT makes less assumptions about the structure of

the response, and therefore can model different targets more accurately.

1.2 Discrete Spectrum of Relaxation Frequencies

In the study of EMI, several researchers have provided a theoretical basis for representing

the EMI response of a metallic object as a discrete sum of damped real exponentials [20, 2].

In terms of the DRT, an EMI response can be modeled as a special case of the DRT where

the G(τ) is discrete. In addition, in the context of broadband EMI application, it is more

intuitive and convenient to write (1) in terms of relaxation frequencies rather than relaxation

times. Using the notation of relaxation frequency, (1) can be rewritten in discrete form as

H(ω) = c0 +
K∑
k=1

ck
1 + jω/ζk

, (4)

where c0 is the shift, K the model order, ck the real spectral amplitudes, and ζk = 1/τk the

relaxation frequencies. The underlying physical process of the model is discussed in Ap-

pendix A. The response at zero frequency H(0) =
∑K

k=0 ck is due to the DC magnetization

of the target.

Aside from the shift, the EMI frequency response of a target can be precisely repre-

sented by the set S = {(ζk, ck) : k = 1 . . .K} which is the discrete spectrum of relaxation

frequencies (DSRF). Each pair (ζk, ck) is one relaxation. The parameter c0 is not considered

part of the DSRF because it is just a shift of the frequency response. The term DSRF and

spectrum are used interchangeably in this work.

The DSRF is related to a target’s physical properties. The frequency response H(ω)

is proportional to the projection of the magnetic polarizability tensor of the target being

measured by the EMI sensor. The magnetic polarizability, hence the DSRF, of several

canonical targets can be calculated analytically, and these formulas show how the DSRF
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is related to the target’s physical properties such as conductivity, permeability, shape, size,

and orientation [34, 3, 12].

The DSRF representation has other useful properties. The relaxation frequencies of a

target are invariant to its relative orientation and position to the sensor. Only the spectral

amplitudes change with orientation and position. The fact that the relaxation frequen-

cies are intrinsic to a target makes the DSRF a valuable feature for target discrimination.

Baum has coined the term “magnetic singularity identification” when using the relaxations

(singularities) for identifying targets [3].

1.3 DSRF Modeling Difficulties

While modeling the EMI response in terms of the DSRF has several benefits, estimating

the DSRF from the frequency response is not straightforward. Estimating the DSRF is

equivalent to finding the parameters of a sum of exponentials, and techniques such as

iterative nonlinear least squares fitting, the matrix pencil method, and modified Prony’s

methods have been used in the past [29, 25]. Often these methods do not perform well

when three or more relaxations are present. The goodness of fit strongly depends on a

good guess of the model order, and is also very sensitive to the initial guess for the model

parameters. More discussion on the performance of these methods can be found in [27, 7].

In practice, a good initial guess is hard to determine, and it is difficult, if not impossible,

to have prior knowledge on the model order. For these reasons, most existing estimation

methods are prone to not converging in the fitting process. Even if the fitting method

converges well with a small residual, there is the concern that the estimated relaxations

could be very different from the actual ones. It is possible that the estimate is merely a

good numerical fit, but has no physical significance [7].

One robust spectrum estimation method is the MATLAB function invfreqs which

implements the algorithm proposed by Levy [23]. invfreqs is robust in the sense that

it can accurately estimate the spectrum of three or more relaxations, and its convergence

is not sensitive to the initial guess. The major downside of this method is that it can

return complex spectral amplitudes or negative relaxation frequencies that have no physical
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meaning.

1.4 Proposed Method

In this thesis, it is proposed a method of estimating the DSRF that requires no prior

knowledge of the model order and always returns real model parameters. The proposed

method linearize the estimation problem by enumerating the relaxation parameter space

and imposing a nonnegative constraint on the parameters [37]. While some targets may

have negative DSRF, the proposed method works very well in practice. Even with the

constraint, the proposed method can represent a much larger class of responses than the

parametric models such as the Cole-Cole and Havriliak-Negami models. For well-known

canonical targets, as presented in this work, the estimated DSRF is an approximate, if not

an exact, representation of the actual physical DSRF.
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CHAPTER II

ESTIMATION METHOD

The proposed DSRF estimation method is formulated in this chapter. To begin the for-

mulation, it is first examined the frequency response when probed at multiple frequencies.

When the target response is measured at N distinct frequencies, the DSRF model (4) can

be written in matrix form



H(ω1)

H(ω2)

...

H(ωN )


=



1 1
1+jω1/ζ1

1
1+jω1/ζ2

. . . 1
1+jω1/ζK

1 1
1+jω2/ζ1

1
1+jω2/ζ2

. . . 1
1+jω2/ζK

...
...

...
. . .

...

1 1
1+jωN/ζ1

1
1+jωN/ζ2

. . . 1
1+jωN/ζK


︸ ︷︷ ︸

Z



c0

c1

c2

...

cK


h = Zc, (5)

where ωmin = ω1 < ω2 < · · · < ωN = ωmax, h is the observation vector, c the spectral

amplitude vector augmented by the shift c0, and Z a matrix containing information about

the relaxation frequencies ζ. The dimension of the matrix Z is dependent on the number

of relaxations present in the spectrum (i.e., the model order). In the case of a simple thin

wire circular loop, there is only one relaxation, so Z has two columns; the first column is

always one to account for c0.

2.1 Method Formulation

To estimate the DSRF (i.e., ζk and ck) from a given observation h, the usual approach is

to minimize the norm of the error, ‖h − Zc‖, but this leads to a nonlinear optimization

problem. Instead, the strategy of basis pursuit is adopted to reformulate (5) as a linear

problem with an overcomplete dictionary [4], and then nonnegative least squares is used

to select the best basis, i.e., the best ζ. The overcomplete dictionary is a matrix Z̃ that

has the same form as Z in (5), but with many more column (shown below). To generate
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the columns, it is enumerated a large set of possible relaxation frequencies in log-ζ space,

and one column is created for each enumerated ζ. The enumeration is done by discretizing

a range of relaxation frequencies into M sample points ζ̃m that are uniformly distributed

in the log-ζ space. The range of relaxation frequencies is chosen such that, ζ̃min ≈ ωmin

and ζ̃max ≈ ωmax. The number M should be chosen large enough to ensure some ζ̃m are

in close proximity to the actual relaxation frequencies ζk. From simulations performed, a

good choice of M gives roughly 25 sample points per decade. More discussion on the choice

of M can be found in Appendix C.

Using the dictionary Z̃, the estimation problem is rewritten as



H(ω1)

H(ω2)

...

H(ωN )


=



1 1
1+jω1/ζ̃1

1
1+jω1/ζ̃2

. . . 1
1+jω1/ζ̃M

1 1
1+jω2/ζ̃1

1
1+jω2/ζ̃2

. . . 1
1+jω2/ζ̃M

...
...

...
. . .

...

1 1
1+jωN/ζ̃1

1
1+jωN/ζ̃2

. . . 1
1+jωN/ζ̃M


︸ ︷︷ ︸

Z̃



c̃0

c̃1

c̃2

...

c̃M


+ error

h = Z̃c̃+ error (6)

where c̃ is the (M+1)-element weighted selector vector. Ideally, when the error between

h and Z̃c̃ is minimized, only those c̃m with corresponding ζ̃m that are near a true ζk will

be nonzero, and they will take on the correct spectral amplitudes ck. It follows that a

DSRF can then be deduced from the nonzero estimated c̃m and their corresponding ζ̃m. It

is expected that a good solution for c̃ has many zero elements.

The challenge in obtaining the correct c̃ is that M is much greater than N , so the system

in (6) is underdetermined and there is not a unique c̃ to minimize the error. Any vector in

the null space of Z̃ can be added to c̃ without changing the error. There are many ways

to select a least-squares (LSQ) solution. The Moore-Penrose pseudoinverse picks the LSQ

solution that has the smallest `2 norm. One can also compute a LSQ solution with the

fewest nonzero components. However, neither of these LSQ solutions produces the correct

spectrum. Details about existing techniques and the difficulties of solving such a system

can be found in [15, 7, 17].
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In the EMI application, it is found in this research that imposing a nonnegative con-

straint on c̃ effectively eliminates a large portion of the null space of Z̃ and the remaining

solution space contains reasonable answers. Under the EMI system used in this study, it is

observed that the real part of the frequency response decreases as the frequency increases,

and the imaginary part remains negative for the great majority of targets. Having all

the spectral amplitudes nonnegative is a sufficient condition to satisfying this observation.

While it is shown that nonnegative DSRF is not a necessary condition, it is also shown that

whenever the real part decreases with respect to the frequency, the spectral amplitudes

are practically nonnegative. A detailed discussion on the applicability of the nonnegative

constraint is provided in Appendix B.

Using the nonnegative constraint, 6 can be solved by optimizing

arg min
c̃
||Z̃ ′c̃− h′|| subject to c̃ ≥ 0 (7)

where Z̃
′
=

Re(Z̃)

Im(Z̃)

 and h′ =

Re(h)

Im(h)

 .

Separating the real and imaginary parts makes the whole system real. The first element in

c̃, c̃0, can be guaranteed nonnegative by adding a sufficiently large real number to h.

2.2 Implementation

The proposed estimation method can be easily implemented through the function lsqnonneg

in MATLAB which uses the algorithm found in [22]. An alternative to lsqnonneg is the

CVX package which implements convex optimization under MATLAB [14]. Both optimizers

provides satisfactory results. However, CVX is a larger and more sophisticated program,

but is slightly slower than lsqnonneg which was written exactly to solve least-square prob-

lems with a nonnegative constraint. Nevertheless, CVX would be of great interest if more

constraints are to be added.

When using either lsqnonneg or CVX, it is found that normalizing the input data h

to have an `2 norm of unity increases the accuracy of estimation. Therefore, all data are

scaled to an `2 norm of unity before optimization, and scaled back to the original norm after

optimization. The original norm may contain useful information for target discrimination.
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2.3 Interpolation

It is observed that in the estimated DSRF, an expected relaxation (ζtrue, ctrue) is often split

into two peaks located at the two sample points adjacent to ζtrue, as shown in Fig. 1. It is also

observed that the two estimated spectral amplitudes add up to the true spectral amplitude

ctrue, and ζtrue is closer to the ζ̃ with larger c̃. This phenomenon can be understood: the

splitting of relaxation happens when the sample points ζ̃m do not coincide with ζtrue, and

ctrue gets distributed among the two sample points that are the closest to ζtrue.

0

0.2

0.4

0.6

0.8

1

logζ

c

 

 

Truth
Estimate − interpolated
Estimate − no interpolation

(ζ̃a, c̃a)

1

(ζtrue, ctrue)

1

(ζ̃b, c̃b)

1

(ζintp, cintp)

1

Figure 1: Splitting of an expected relaxation followed by interpolation. The sample points
ζ̃ do not coincide with ζtrue, so ζtrue is split into the two nearest sample points: ζ̃a and ζ̃b.
The estimation accuracy is increased by interpolating in ζ̃ using c̃a and c̃b.

The accuracy of the estimation can be increased by taking advantage of this well-behaved

and consistently recurring phenomenon. The splitting processes can be reversed. A true re-

laxation frequency could be restored by interpolating between two adjacent ζ̃m with nonzero

c̃m according to their spectral amplitudes. The interpolated spectral amplitude is simply

the sum of the two adjacent spectral amplitudes. Mathematically,

cintp = c̃a + c̃b (8)

log(ζintp) = log(ζ̃a) +
c̃b

c̃a + c̃b
log(ζ̃b/ζ̃a). (9)

The quantities are as depicted in Fig. 1. The sample points ζ̃m are placed close enough that

a simple linear interpolation in log-ζ space gives satisfactory results. The interpolation is

applied only on two adjacent nonzero relaxations.

After the interpolation is performed, any c̃m with a value of zero is eliminated along with

its corresponding ζ̃m. The resulting relaxation frequencies is denoted as ζ̂l, with spectral

amplitudes, ĉl, or in vector notation, ζ̂ and ĉ, both with length L. It is convenient and
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desirable to interpret the estimation results by looking at ζ̂ and ĉ. Every entry in ζ̂ is an

estimate of one relaxation frequency of the target with its corresponding estimated spectral

amplitude in ĉ. The estimated DSRF Ŝ = {(ζ̂l, ĉl) : l = 1 . . . L} is then compactly stored in

ζ̂ and ĉ. In addition, the vector length L is an estimate of the model order K. Note that

c̃0 is not part of the DSRF and therefore not interpolated, and is not in the vector ĉ.

2.4 Summary

To estimate the unknown DSRF S = {(ζk, ck)} from a given set of observations h over

N frequencies, first decide on a relaxation frequency range [ζ̃min, ζ̃max] and the number

of points M to be sampled in this range. Then generate the sample points ζ̃m, construct

a dictionary matrix Z̃, perform the optimization described in (7), and finally obtain the

estimated DSRF Ŝ = {(ζ̂l, ĉl)} by interpolating the solution c̃ returned by the optimizer.

The performance of the proposed method is discussed in detail in the following chapter.
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CHAPTER III

ESTIMATION PERFORMANCE

To examine the performance of the proposed method, the method is tested against syn-

thetic, laboratory, and field data. The method is shown to be accurate, stable, and fast.

All estimations are performed with M = 100 and optimized with lsqnonneg. Prior to

presenting the estimation results, an error measure is introduced.

In assessing the signal strength, the signal-to-noise ratio (SNR) is used. The signal

power is computed by
∑N

i=1 |H(ωi)|2/N . The noise power in synthesized data is equal

to the variance of the noise. In laboratory and field data the background signal can be

measured and is treated as noise when calculating the SNR.

The frequency response of targets are presented on Argand diagrams. Specifically, com-

plex frequency response functions are plotted on a complex plane with the imaginary part

as the vertical axis, the real part as the horizontal axis, and frequency as the parameter.

All presented spectra are normalized such that
∑

i=1 ci = 1 (c0 is separate). Normalization

removes the influence of the signal amplitude which changes for many reasons.

Notation : ζ and c are the true/theoretical relaxation frequencies and spectral amplitudes;

ζ̂ and ĉ are the estimates.

3.1 Dissimilarity Measure Between Two DSRFs

Before the goodness of estimation can be evaluated, some kind of measure is needed to

assess the dissimilarity between the estimated DSRF and the truth. It is difficult, however,

to compare two sparse spectra when the number of relaxations are different, which happens

frequently. When the number of relaxations is the same (K=L), a possible measure of the

dissimilarity between two spectra is

D(Ŝ, S) =
1

I

I∑
i=1

| log ζ̂i − log ζi| (10)

∀ i ζ̂i ≤ ζ̂i+1 and ζi ≤ ζi+1,
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where I=K=L. In (10) only the relaxation frequencies ζk are considered, and spectral

amplitudes ck are ignored. This approximation is reasonable and convenient when two

spectra are visually similar. We refer to this dissimilarity measure as the deviation. It has

the units of decades.

Another measure that is more comprehensive is the Earth Mover’s Distance (EMD) [28,

10]. The EMD consistently quantifies the dissimilarity between two spectra, even when

K 6= L. Intuitively, the EMD measures how much work it takes to morph one spectrum

into the other. Specifically, one spectrum represents piles of earth with volume ĉl located

at the associated ζ̂l. The other spectrum represents holes in the ground with capacity ck

located at ζk. The distance between a pile of earth and a hole is naturally defined to be the

difference between ζ̂l and ζk in log space, and the work to move some earth into a hole would

be the amount of earth moved times the distance traveled. Then, the EMD is proportional

to the least amount of work needed to move as much earth into the holes. For the DSRF,

the EMD is measured in decades because it is almost always examined in log-ζ space. See

Appendix E for details about the EMD.

3.2 Synthetic Data

In this section, the proposed estimation method is tested against synthetic data to show its

functionality, robustness, and stability. The synthesized data is sampled at 21 frequencies

approximately logarithmically distributed over the range 300 Hz–90 kHz. The range of ζ for

estimation is chosen such that log(ζ̃min) and log(ζ̃max) are 2.4470 and 6.6223, respectively.

This corresponds to a frequency range of 45 Hz–670 kHz, which is larger than the measured

frequency range. With M = 100, the spacing between two sample points is 0.0422 decades.

The number of samples and the frequencies are chosen to be the same as the laboratory

hardware system, but the proposed method can also perform under different settings.

3.2.1 Two Coplanar Coaxial Loops

The performance of the proposed method is good when tested on a simulated two coplanar

coaxial circular loops of copper wire. The two loops have circumferences 200 mm and
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150 mm, respectively. The larger loop has a wire radius of 0.0635 mm (#36 AWG1), and

the smaller one a wire radius of 0.3215 mm (#22 AWG). A theoretical EMI response and the

DSRF of this target is provided in Appendix D. The EMI response is simulated at a 70 dB

signal-to-noise ratio (SNR) with additive white Gaussian noise (AWGN). The estimated

spectrum is shown in Fig. 2 along with the true spectrum. The estimated spectrum is

almost identical to the truth. The deviation from the true spectrum is 0.0013 decades,

which is very small compared to the detectable ζ range, about 4 decades. The computation

took 0.11 s on a 2.66 GHz CPU with 960 MB RAM.
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Figure 2: Estimation of a simulated two coplanar coaxial circular loop target, for which
logζk and ck are (4.7552 6.0651) and (0.5013 0.4987), respectively. The estimates for logζ̂l
and ĉl are (4.7557 6.0672) and (0.5010 0.4990), respectively.

3.2.2 Six-relaxation DSRF

While existing sum-of-exponentials estimation methods can also successfully estimate a

two-relaxation case, when the number of relaxations is three or more, these methods start

to encounter problems such as returning complex model parameters or not converging [7].

Here, the proposed method is tested on a six-relaxation DSRF. The target response is

synthesized at 70 dB SNR with AWGN:

H(ω) = 1 +

6∑
k=1

ck
1 + jω/ζk

+ noise. (11)

The relaxation frequencies are chosen such that two ζk coincide with a sample point, one ζk

is half way between two log-ζ sample points, and the rest are randomly in between sample

points. The relaxation frequencies are chosen this way to demonstrate the functionality

1American wire gauge
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of the proposed method when the sample points do not coincide with the true relaxation

frequencies.

The synthesized and estimated DSRFs are shown in Fig. 3(a) and Table 1. All six

relaxation frequencies are correctly recovered. The estimated model parameters are real,

and the deviation from truth is small. The EMD between the estimate and truth is 0.0365

decades. There is a seventh relaxation in the estimate introduced by the noise, but its

spectral amplitude is small.
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Figure 3: Estimation of a six-relaxation DSRF. See Table 1 for numerical data. (a) Esti-
mates by the proposed method. (b) Estimates by invfreqs with nonphysical parameters
removed.

The same DSRF is also estimated using invfreqs. The a priori model order is chosen

to be 8 which is slightly higher than the actual but is reasonable because in practice it is

difficult to know the actual model order. The estimated model parameters are recorded

in Table 1. There are two estimated ζ that are complex and one negative. A physically

possible DSRF can be obtained by throwing away these complex or negative relaxation

frequencies. The resulting estimated DSRF is shown in Fig. 3(b). Three relaxations are

correctly recovered, but the two left most expected relaxations are not. The EMD between

the estimate and truth is 0.3323 decades, much higher than the EMD of the proposed

method.
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Table 1: Estimation of a six-relaxation DSRF

ck 0.2000 0.1333 0.2000 0.1333 0.2000 0.1333
Truth log ζk 2.6842 3.4855 4.5135 4.9985 5.6839 6.1162

Proposed ĉl 0.2076 0.1343 0.1973 0.1286 0.1928 0.1341 0.0052
method log ζ̂l 2.6515 3.4803 4.5109 4.9981 5.6801 6.0809 4.8931

ĉl 0.2418 0.2269 0.1465 0.2546 0.1301 −0.3902 · 10−4 −0.3902 · 10−4 0.1334
invfreqs log ζ̂l

†
3.3303 4.5111 5.0126 5.7188 6.2983 −0.0012 + 0.0042i −0.0012− 0.0042i −0.0127

†Negative or complex values are not logged
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Although a physically possible DSRF can be obtained by throwing away the nonphysical

estimates, the resulting spectrum can be quite different from the truth. Using the actual

model order or its neighboring numbers as the a priori model order does not preclude

complex model parameters either. Nevertheless, when the true model order is low and

the SNR is high, satisfactory estimates can be obtained from invfreqs by throwing out

nonphysical parameters.

Returning complex or nonphysical estimates is a problem that plagues many methods,

and there is not a proper way to deal with the complex estimates. The best way is perhaps

to restrict the model parameters to be real and physical when setting up the problem, and

this is the approach taken in the proposed method.

3.2.3 Signal to Noise Ratio

To see how the proposed method performs in noise, a Monte Carlo simulation versus SNR

is run on a target with a four-relaxation DSRF. Goodness of estimation is measured by the

EMD between the estimate and truth. The simulation result, shown in Fig. 4, shows the

robustness of the estimation method at different signal-to-noise ratios.
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Figure 4: Monte Carlo simulation on goodness of estimation vs. SNR performed on a
four-relaxation DSRF. Sample size is 10,000 at each SNR. Error bars indicate the range of
EMD between the 10th and 90th percentiles.

As expected, the EMD between the estimate and the truth increases as the SNR de-

creases. This suggests that the proposed method is functional in a range of SNR where the

EMD is below some threshold. This threshold, however, depends on the application of the

estimated spectrum. For example, in the case of classification, a more robust classifier may

tolerate worse estimations and, therefore, allow lower SNR.
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Figure 5: Monte Carlo simulation on goodness of estimation vs. SNR for different DSRFs
with model order ranging from 1 to 10. Sample size is 10,000.

The same noise simulation was also performed on invfreqs using the actual model order

as the a priori model order. Nonphysical parameters are removed from the estimate. As

shown in Fig. 4, invfreqs barely functions except at around 90 dB SNR where its average

EMD drops to 0.1 decades. In comparison, the proposed method has an average EMD one

hundred times smaller than that of invfreqs at 90 dB SNR, and has low EMD for a wide

range of SNR.

Figure 5 shows the same Monte Carlo simulation performed on DSRFs with different

model orders using the proposed method. It is seen that a higher model order DSRF requires

a higher SNR to achieve a given goodness of fit (EMD). Although the curves are different

for each model order, all curves have the same behavior, i.e., the goodness of estimation

is positively correlated to the SNR. The consistent trend of these curves suggests that the

proposed method is stable and functional over a wide range of SNR.

While it seems rather high the SNR levels at which the simulations were conducted, it

was observed that what would usually be a high SNR in other applications is noisy for the

EMI application. For example (Fig. 6), a frequency response added with a 25 dB AWGN

appears noisy even though a 25 dB AWGN would be considered as a very high SNR in other

applications, like radar. In addition, the range of the SNR for the simulation was chosen

to be close to what is observed in practice. In the laboratory measurements, a typical SNR

for loop targets in this work is 70 dB when the target is placed 10 cm below the EMI sensor.

In reality, the depth and size of the target are two dominant factors of SNR. The SNR

increases with the size of the target, and decreases with the buried depth.
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Figure 6: An instance of a frequency response added with a 25 dB AWGN.

3.3 Laboratory Data

The primary interest of this section is to examine the physical meaning of the estimated

DSRF. It is shown here that the estimated spectrum agrees with the theoretical, physical

DSRF derived from electromagnetic theory, and the estimate is not just another good fit to

the data, which can be a problem for other estimation methods [7]. The data are measured

with a wideband EMI sensor operating at 21 frequencies approximately logarithmically

distributed over the range 300 Hz–90 kHz [30].

3.3.1 Single Loop

It is examined here the simplest case — a single thin wire circular loop. This target contains

only one relaxation located at ζ = R/L, where L is the inductance and R is the resistance

of the loop. These quantities can be computed according to (26) and (27) in Appendix D.

The theoretical EMI frequency response and DSRF can be found in [34].

Figure 7(a) shows three independently measured EMI responses for circular copper

loops of circumferences 150, 200, 200 mm and AWG No. 24, 32, and 36, respectively. The

theoretical and estimated DSRF are plotted together in Fig. 7(b). The estimates are seen

to agree with the theory. The deviations from the theory are 0.0047, 0.0117, and 0.0028

decades for the loops with AWG No. 24, 32, and 36, respectively. All deviations are

relatively small in the observable relaxation frequency range, and it can be concluded that

the estimated DSRF is an accurate representation of the physical DSRF.
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Figure 7: (a) Frequency response of three independently measured single loops on an
Argand diagram. Responses are normalized such that ‖h‖2 = 1. Measurements are labeled
in the form of AWG/circumference(mm). (b) Theoretical and estimated DSRF. Theoretical
log ζk, from left to right, are 4.9364, 5.6416, and 6.0167. Estimated log ζ̂l, from left to right,
are 4.9411, 5.6534, and 6.0195. All relaxations have an amplitude of unity.

3.3.2 Two Coplanar Coaxial Circular Loops

To test the method on a more complicated spectrum, the two-coplanar-coaxial-circular-

loops target is reconsidered. A physical target was built according to the same specifications

described in Section 3.2.1. The EMI response of this target was measured in the laboratory

and is shown in Fig. 8(a). The SNR is about 70 dB. The estimated and theoretical DSRF

are displayed in Fig. 8(b).
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Figure 8: (a) Laboratory measured frequency response of two coplanar coaxial circular
loops on an Argand diagram. Theory deviates from the measurement at higher frequencies.
Responses are normalized such that ‖h‖2 = 1. (b) Theoretical and estimated DSRF. log ζk
and ck are (4.7552 6.0651) and (0.5013 0.4987), respectively. The estimate log ζ̂l and ĉl are
(4.7768 6.0514) and (0.4941 0.5059), respectively.
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The estimated DSRF deviates from the theory slightly with a deviation of 0.0177

decades. This is most likely due to the thin-wire approximation used in the theory. In

the theory, the wire radius is assumed to be much smaller than the loop radius. The inner

loop (#22 AWG) has a loop radius to wire radius ratio of about of 47 which is not very high,

meaning the wire cannot be modeled as infinitely thin. In addition, thicker wires have a

secondary relaxation due to the off-wire-axial current flow which is not accounted for in the

theory. At any rate, the deviation is small, and the estimated spectrum is very close to the

theory. Thus, it can be concluded that this estimated DSRF is an accurate representation

of the true DSRF of the physical target.

3.3.3 Non-magnetic Sphere

The spectrum of a metallic sphere is difficult to estimate because it contains an infinite

sequence of relaxations, and the spacing between successive relaxation frequencies decreases

as the relaxation frequency decreases [3]. The decrease in spacing makes the relaxations

in the region of these closely spaced ζ indistinguishable from one another. It is therefore

understood that it is impossible to perfectly recover the spectrum of a sphere. Here, the

proposed method is tested against the EMI response of an aluminum sphere measured in

the lab. The sphere has a radius of 0.9525 cm. The theoretical and estimated DSRF are

plotted in Fig. 9. The EMD between the truth and estimate is 0.1088 decades.
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Figure 9: DSRF estimation of a laboratory-measured sphere. The theoretical DSRF has
an infinite sequence of relaxation frequencies.

In the estimated DSRF, the first two relaxations are correctly recovered, but the re-

maining theoretical relaxations are accounted for by the other three estimated ones. It is

observed that closely-spaced theoretical relaxations in one region are combined into one
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estimated relaxation, and the theoretical spectral amplitudes in that region roughly add up

to the estimated spectral amplitude. For example, the right-most estimated relaxation has

an amplitude of 0.0438, and it accounts for the infinitely many theoretical relaxations to its

right, which have an amplitude sum of 0.0521. The estimated DSRF, even though it cannot

recover exactly the theoretical DSRF, is seen to approximate the theory. In this case of a

sphere, the estimated DSRF is an approximation to the physical DSRF, and it is not just

a good fit, but a fit that can be related to the physical properties of the target.

3.4 Field Data

As a final demonstration of the proposed method, it is estimated the DSRF of three types

of landmines (Fig. 10). The EMI measurement system uses a dipole transmit coil and a

quadrapole receive coil along with a down-track filter that is important to make the nonneg-

ative constraint applicable for this system [30]. For each type of landmine, measurements

were collected from several landmines buried at different depths and locations, and the

DSRF of each sample was estimated and then plotted together with others of the same

type. The spectral amplitudes are represented by the color intensity.

Figure 10(a) presents the DSRF of seven Type-A landmines: a low-metal content, non-

magnetic, moderate EMI response antipersonnel landmine. The SNR ranges from about

45 dB to 60 dB. All seven Type-A landmines exhibit consistency in the relaxation frequen-

cies and the spectral amplitudes. The average EMD between pairs of landmines is 0.0594

decades.

Figure 10(b) presents the DSRF of eight Type-B landmines: a medium-metal content,

magnetic, strong EMI response antipersonnel landmine. The SNR ranges from about 55 dB

to 70 dB. The spectra are consistent, both ζ̂ and ĉ exhibit the same behavior in all eight

samples. Mine #7 differs from the others somewhat in ζ̂, but the number of relaxations

and the trend of spectral amplitudes is the same as the other seven Type-B landmines. The

average EMD between pairs of landmines is 0.1536 decades.

Figure 10(c) presents the DSRF of seven Type-C landmines: a low-metal content, mag-

netic, weak EMI response antipersonnel landmine. The SNR ranges from about 20 dB to
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35 dB. The spectra are less consistent compared to Type-A and Type-B landmines, but

notice that the prominent relaxations are all located around logζ=5 decades. Since the

response is weak, the noise could move the relaxations around as seen in Fig. 10(c). The

average EMD between landmine pairs is 0.1490 decades, which is slightly lower than the

average EMD in Fig. 10(b). This is because the two prominent relaxations in Fig. 10(b)

are farther away from each other.

76543
1
2
3
4
5
6
7

logζ (decade)

M
in

e 
Nu

m
be

r

 

 

0

0.1
0.2

0.3
0.4
0.5

0.6

(a)

76543
1
2
3
4
5
6
7
8

logζ (decade)

M
in

e 
Nu

m
be

r

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

76543
1
2
3
4
5
6
7

logζ (decade)

M
in

e 
Nu

m
be

r

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

Figure 10: Estimated DSRF of real landmines. The spectral amplitude is represented by
the intensity: darker the color, larger the amplitude. (a) Seven Type-A landmines. (b)
Eight Type-B landmines. (c) Seven Type-C landmines.

The estimated H(0) of the three types of landmines are normalized and plotted in
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Fig. 11. The normalized H(0) reflects the magnetic properties of the landmines. Type-

A landmines are nonmagnetic and therefore have a normalized H(0) close to zero. The

other two types of landmines have a normalized H(0) well above zero which reflects the

magnetic content of the landmines. Variations in the estimated H(0) are consistent with

the variations in the DSRF.
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Figure 11: Normalized estimated H(0) for landmines in Fig. 10. H(0) is normalized by∑L
l=1 ĉl.

The variation of the estimated DSRF and H(0) could be caused by several factors such

as manufacturing variations, corrosion, the magnetic properties of the soil, or measurement

errors. Manufacturing variations in the shape of the metal parts and their electrical and

magnetic properties can cause variations in the DSRF. Corrosion can change the properties

of the metal parts which will change its response. It is possible that landmine #7 in

Fig. 10(b) has a metal part slightly different from the other seven instances. The lower

normalized H(0) suggests a different magnetic property, and the slightly different DSRF

reaffirms this small variation in the metal.

The response due to the magnetic properties of the soil can also influence the DSRF

since the response of the soil is superimposed on the response of the target and it is not

possible to completely separate the two. For the landmines presented in Fig. 10(c), the

variation in the estimated H(0) maybe primarily due to the magnetic properties of the

soil. Since the magnetic shift observed in the response of the soil is on the same order

of magnitude as the response of these landmines, the soil can have a strong influence on

the landmine responses. On the other hand, landmines presented in Fig. 10(b) have much

stronger EMI responses, and influence from the soil is therefore insignificant.
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In general, landmine of one type have consistent estimated DSRFs. These stable and

recurring DSRFs could be a valuable feature to be exploited in target discrimination. The

estimated H(0) can also be used as a feature when it is not overwhelmed by the noise or

ground response.

3.4.1 Dissimilarity Between Various Mine Types

It is further demonstrated here the consistency of the estimated DSRF from targets of the

same type and also the dissimilarity between different types of targets [36]. It is chosen one

hundred independently measured field samples from eleven types of landmines and various

metal clutter objects [30]. After estimating the DSRF of each sample, the EMD between

all pairs of DSRFs is computed to generate the dissimilarity map shown in Fig. 12. The

diagonal is zero because that is the EMD between a DSRF and itself which is zero.

It is seen that landmines of the same type are, in EMD units, close to each other, meaning

landmines of the same type are similar. Mines of type I do not have small EMD among

its sample pairs. The reason is unclear, but it is speculated that this target has negative

relaxations as the real part of the responses do not always decrease with the frequency.

Therefore, the estimated DSRF could be inaccurate. On the other hand, landmines and

clutter, are far from each other, with few exceptions. Clutter that is similar to landmines

may cause false alarms, but the EMD from clutter to any type of mine is mostly smaller

than the EMD within that mine type. The plot simply shows the clustering of landmines

and suggests the applicability of the DSRF for target discrimination.
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Figure 12: The EMD between samples from eleven types of landmines (A to K) and metal
clutter. Darker colors denote smaller distances which indicate that two samples are more
similar.
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CHAPTER IV

CONCLUSIONS

In this thesis, a robust method is formulated to estimate the DSRF of a target. The

proposed method does not require a priori knowledge of the model order and returns only

real parameters. The proposed method is tested with a wide variety of data, targets, and

noise levels, and is found to give stable, accurate, and quick estimates of the DSRF of a

target. When the DSRF cannot be exactly recovered, the estimate is an approximation to

the actual. In all cases, the estimated DSRF is directly related to the physical properties

of the target.

The consistently estimated DSRF from targets of the same type suggests that the pro-

posed method is a promising way to generate features for target discrimination. The rota-

tional and positional invariability of the relaxation frequencies also suggests the potential of

performing target discrimination using the DSRF. Designing a target discriminator based

on the estimated DSRF would be a natural extension of this work.
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APPENDIX A

THE EMI MODEL

The physical model of the EMI response and its relation to the DSRF model is presented

here. The EMI response of a metallic object is the result of the interaction between the

transmitting loops, the receiving loops, and the object’s magnetic polarizability M [31]:

H(ω) = αHR
TM(ω)HT, (12)

where α is a real constant, HT is the magnetic field generated by the transmitting loop, HR

is the magnetic field of the receiving loop if it is driven, and M is a complex, frequency

independent, second rank tensor.

Equation (12) can be expanded because the magnetic polarizability of a target can be

written as a sum of relaxations [3]:

M(ω) = T0T 0 −
∑
k=1

Tk(
jω/ζk

1 + jω/ζk
)T k, (13)

where Tk is a real constant and T k is a real, symmetric, second rank tensor. The first term

is due to the bulk magnetic permeability of the target, which is assumed to be frequency

independent, and the second term is due to the currents induced in the target [31].

Expanding M in (12) using (13), the response becomes

H(ω) = αHR
T

[
T0T 0 −

∑
k=1

Tk(
jω/ζk

1 + jω/ζk
)T k

]
HT

= α

[
T0HR

TT 0HT −
∑
k=1

Tk(
jω/ζk

1 + jω/ζk
)HR

TT kHT

]

= d0 −
∑
k=1

dk
jω/ζk

1 + jω/ζk
, (14)

where dk = αTkHR
TT kHT, and it is noted that HR

TT kHT is constant for a given position

and orientation of the target relative to the sensors. This form provides more intuition of

the physical process of the EMI, where, again, the first term is due to the bulk magnetic

permeability of the target and the second term is due to the currents induced in the target.
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The EMI model in (14) can be related to the model presented in Section 1.2 by

H(ω) = d0 −
∑
k=1

dk
jω/ζk

1 + jω/ζk

= d0 −
∑
k=1

dk
jω/ζk

1 + jω/ζk
+ dk − dk

=

(
d0 −

∑
k=1

dk

)
−
∑
k=1

dk
jω/ζk

1 + jω/ζk
− dk

1 + jω/ζk
1 + jω/ζk

=

(
d0 −

∑
k=1

dk

)
+
∑
k=1

dk
1 + jω/ζk

= c0 +
∑
k=1

ck
1 + jω/ζk

.

It is identified that ck and dk are related by

dk = ck, k = 1, 2, 3, . . . (15)

d0 = c0 +
∑
k=1

ck. (16)
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APPENDIX B

NONNEGATIVE SPECTRUM

It is examined here the relation between the nonnegative spectral amplitudes and the ob-

servation that the real part of a frequency response decreases as the frequency increases. It

is found that whenever the real part of a frequency response decreases with respect to the

frequency, one can practically assume the spectral amplitudes are all nonnegative.

The EMI frequency response of a metallic target can be modeled as

H(ω) = c0 +

K∑
k=1

ck
1 + jω/ζk

. (17)

For a frequency response to have decreasing real part with respect to the frequency ω, it is

sufficient but not necessary to have all nonnegative ck, as shown in the derivation below.

However, the derivation also suggests that whenever a ck is negative it is either (a) very

small in magnitude or (b) close to another positive ck of larger magnitude, which makes

this negative ck practically nonnegative.

Suppose a response has two relaxations

H(ω) =
a

1 + jω/ζa
− b

1 + jω/ζb
(18)

with a, b > 0. The real part of the response is

Re{H(ω)} =
a

1 + ω2/ζ2
a

− b

1 + ω2/ζ2
b

.

To have a decreasing real part with respect to the frequency, it must be satisfied that

dRe{H(ω)}
dω

=
−2aω/ζ2

a

(1 + ω2/ζ2
a)2

+
2bω/ζ2

b

(1 + ω2/ζ2
b )2

< 0. (19)

Multiply by (1 + ω2/ζ2
a)2(1 + ω2/ζ2

b )2/(2ω):

−aζ2
a(1 + ω2/ζ2

b )2 + bζ2
b (1 + ω2/ζ2

a)2 < 0.

Express in the form x2 − y2:

[
√
bζ−1
b (1 + ω2/ζ2

a)]
2
− [
√
aζ−1
a (1 + ω2/ζ2

b )]
2
< 0.
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Use the identity x2 − y2 = (x+ y)(x− y):

[
√
bζ−1
b (1 + ω2/ζ2

a) +
√
aζ−1
a (1 + ω2/ζ2

b )]·

[
√
bζ−1
b (1 + ω2/ζ2

a)−
√
aζ−1
a (1 + ω2/ζ2

b )] < 0

The first term can be divided out because it is positive:

√
bζ−1
b (1 + ω2/ζ2

a)−
√
aζ−1
a (1 + ω2/ζ2

b ) < 0.

Rearrange in the powers of ω:

g(ω) = ω2(

√
a

ζaζ2
b

−
√
b

ζ2
aζb

) +

√
a

ζa
−
√
b

ζb
> 0. (20)

To satisfy (19) is to satisfy g(ω) > 0. The following finds the minimum of g(ω) and

ensures it is positive.

dg(ω)

dω
= 2ω(

√
a

ζaζ2
b

−
√
b

ζ2
aζb

) = 0

The extremum is at ω = 0. To have this extremum be a minimum,

d2g(ω)

dω2

∣∣∣∣
ω=0

= 2(

√
a

ζaζ2
b

−
√
b

ζ2
aζb

) > 0

√
a

ζaζ2
b

>

√
b

ζ2
aζb

a

b
>

(
ζb
ζa

)2

. (21)

Restrict the minimum be positive:

g(ω = 0) =

√
a

ζa
−
√
b

ζb
> 0

√
a

ζa
>

√
b

ζb

a

b
>

(
ζa
ζb

)2

. (22)

Therefore, H(ω) has decreasing real part with respect to ω when (21) and (22) are

satisfied. Or equivalently,

a

b
> max(

(
ζa
ζb

)2

,

(
ζb
ζa

)2

). (23)

This also requires a > b since the right-hand side ≥ 1.
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To interpret this result, (23) is expressed in an alternative form. Take the log of (23)

on both sides:

1

2
log

a

b
> | log ζa − log ζb|. (24)

The right-hand side is the distance between the two relaxations in log space. When the

negative component is relatively large (b large, a/b → 1; recall that a > b) the left-hand

side approaches zero and the distance approaches zero. When the negative component is

far away from the positive one (right-hand side large), b is required to be relatively small to

a. In either case, the negative relaxation would be overwhelmed by the positive relaxation,

especially under the presence of noise.

A similar conclusion can be make about the imaginary part of a response is always

negative. It is easy to prove that the nonnegative spectral amplitude is also a sufficient

but not a necessary condition to having negative imaginary part. This proof is left as an

exercise to the reader.
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APPENDIX C

DENSITY OF DISCRETIZATION OF THE RELAXATION

FREQUENCY SPACE

The number M in (5) decides the number of sample points placed in a relaxation frequency

range. Equivalently, M controls the density of discretization of the ζ space. The denser

the discretization, the more likely a sampled ζ is close to the true ζ. In the extreme case,

if an infinite number of sample points fill up the relaxation frequency range, there must

be one sampled ζ that coincides with the true ζ. Of course, computationally it would

be impossible to estimate a DSRF with an infinite number of sample points. Even if the

number of samples is kept finite, with a fixed number of observations N , the null space of Z̃

gets larger and larger as M increases, and the number of possible bad estimates increases.

It is therefore desirable to have M just large enough, so that the estimate is likely correct

while the computational cost remains low.

To determine an good choice of M , a Monte Carlo simulation on the density of discretiza-

tion of ζ space is performed over a range of M with different noise levels. The simulation

result is shown in Fig. 13, where a higher EMD value means worse estimates. The fig-

ure suggests that M should be greater than 60 to avoid bad estimation due to insufficient

sample points while M should be no greater than 200 because adding more sample points

does not improve the goodness of fit. It is seen that within the range 60 < M < 200, at

lower signal-to-noise ratios (50–60 dB), better estimation is obtained with M ≈ 70. While

at higher SNRs (65–80 dB), better estimation is obtained with M ≈ 120. In words, at lower

SNR, lower discretization density gives more robust performance, which agrees with the

intuition that larger dictionaries are more sensitive to perturbation of noise. On the other

hand, when the SNR is high, higher discretization density delivers more accurate estimates.

To accommodate a wide range of SNR, to chose M ≈ 100 is a good compromise, and since

the relaxation frequency range is about 4 decades, there are about 25 sample points per
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decade.
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Figure 13: Monte Carlo simulation on density of discretization of ζ space. Each point on
the curve is the average EMD over 10,000 samples.

Although the Monte Carlo simulation is performed on a two-relaxation target, the result

should well represent the behavior of the estimation process in general. This is true as

observed in simulations of different DSRF. Therefore, it can be inferred that, in general,

a good choice of M is around 25 sample points per decade. As shown in the figure, the

goodness of fit is not sensitive to the chosen M given it is large enough, so there is some

freedom on choosing M .
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APPENDIX D

A CIRCUIT MODEL FOR TWO COPLANAR COAXIAL CIRCULAR

LOOPS

It is derived here a theoretical approximation to the magnetic polarizability of two coplanar

coaxial circular loops in low-frequency realm. A larger loop of radius r1 with wire radius

a1 is placed around a smaller loop of radius r2 with wire radius a2. The wires have electric

conductivity σ and relative permeability µr. Two loops are on the same plane and share

the same center. The wire radius is assumed to be much smaller than the loop radius. i.e.,

a << r. This configuration of two coplanar coaxial circular loops can be modeled as a

simple two coupled LR circuits shown in Fig. 14.

LM

I1 I2

V2

R2

V1

R1

L1 L2

Figure 14: Circuit model for two coplanar coaxial circular loops.

The voltage V (s) induced by the incident magnetic field on the loop is related to the

incident magnetic excitation H inc in Laplace domain through

V (s) = −sµ0H
incA, (25)

where A is the loop area and µ0 is the permeability of free space. Assume the incident

magnetic field is normal to the plane containing the loops. In low frequency, the resistance

R of the loop is

R =
2r

a2σ
, (26)

and the inductance L is [32]

L = rµ0[(1 +
a2

8r2
)ln(

8r

a
) +

a2

24r2
− 2 +

µr
4

]. (27)
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The mutual inductance LM between the two loops is [33]

LM =
2µ
√
r1r2

k
[(1− 1

2
k2)K(k)− E(k)], (28)

where

k2 =
4r1r2

(r1 + r2)2
, (29)

and K and E are the complete elliptic integrals.

In the Laplace domain, the system equation for the circuit is [34]V1

V2

 =

R1 + sL1 sLM

sLM R2 + sL2


I1

I2

 . (30)

Solve for the currents:I1

I2

 =
−sµ0H

inc

(R1 + sL1)(R2 + sL2)− (sLM )2
·

R2 + sL2 −sLM

−sLM R1 + sL1


A1

A2

 . (31)

The magnetic polarizability M is then

M(s) =
A1I1 +A2I2

H inc
(32)

=
−sµ0[A2

1(R2 + sL2) +A2
2(R1 + sL1)− 2sA1A2LM ]

(R1 + sL1)(R2 + sL2)− (sLM )2
. (33)

Perform partial fraction expansion:

M(s) = −s( Q1

s− s1
+

Q2

s− s2
) (34)

= −(Q1 +Q2) +
Q1

1− s/s1
+

Q2

1− s/s2
, (35)

where s1 and s2 are the roots of the denominator in (33) [12]:

s1,2 =
−(R1L2 +R2L1)±

√
(R1L2 −R2L1)2 + 4R1R2L2

M )

2(L1L2 − L2
M )

. (36)

Variable Q1 and Q2 are simply

Q1 =
µ0[A2

1(R2 + s1L2) +A2
2(R1 + s1L1)− 2s1A1A2LM ]

s1 − s2
(37)

Q2 =
µ0[A2

1(R2 + s2L2) +A2
2(R1 + s2L1)− 2s2A1A2LM ]

s2 − s1
. (38)

Using (36)–(38) the DSRF of two coplanar coaxial circular loops can be computed. The

relaxation frequency ζk = −sk with corresponding spectral amplitude Qk.
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APPENDIX E

EARTH MOVER’S DISTANCE

Given two distributions Ŝ = {(ζ̂i, ĉi) : i = 1 . . . L} and S = {(ζj , cj) : j = 1 . . .K}, the

Earth Mover’s Distance (EMD) between the two distributions can be computed by solving

the optimization problem [10]:

Define dij = | log ζ̂i − log ζj | (39)

EMD(Ŝ, S) = min
fij

∑L
i=1

∑K
j=1 fijdij∑L

i=1

∑K
j=1 fij

(40)

subject to

K∑
j=1

fij ≤ ĉi i = 1 . . . L (41)

L∑
i=1

fij ≤ cj j = 1 . . .K (42)

L∑
i=1

K∑
j=1

fij = min(

L∑
i=1

ĉi,

K∑
j=1

cj) (43)

fij ≥ 0 i = 1 . . . L, j = 1 . . .K (44)

where fij is an intermediate variable used during the optimization. Adapting the illustration

in Section 3.1, Ŝ is the piles of earth and S the holes. Equation (41) guarantees no overdraw

from each pile of earth, (42) guarantees no over fill at each hole, (43) sets the problem to fill

up the holes with as much earth as possible, and (44) allows only moving earth into holes

and not the reverse.

In this work, spectra should be normalized having sum of all spectral amplitudes be

unity (
∑
ci = 1). In this case, the above optimization problem is simplified to having

the denominator in (40) be one and the right-hand-side of (43) be unity. The EMD also

becomes symmetric.
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